Investigations on the Aerothermal Performance Uncertainty Quantification of the Turbine Blade Squealer Tip

2021 ◽  
Author(s):  
Ming Huang ◽  
Zhigang Li ◽  
Jun Li ◽  
Liming Song

Abstract The first-stage rotor squealer tip is a key area in the gas turbine for both aerodynamic performance and heat transfer characteristics, which should be carefully designed. However, harsh operating conditions near the rotor squealer tip can cause the geometry of the squealer tip to degrade, and manufacturing inaccuracies can also cause the squealer tip geometry to deviate from the ideal design. In this work, an uncertainty quantification (UQ) method is proposed using the non-intrusive polynomial chaos expansion method and Smolyak sparse grids. Then coupled with three dimensional (3D) Reynolds-Averaged Navier-Stokes (RANS) solutions, an uncertainty quantification procedure is carried out for aerodynamic and heat transfer performance of GE-E3 rotor blade squealer tip. A parameter sensitivity analysis using the Sobol Indice method is carried out to identify the key parameters for aerothermal performance of the squealer tip. Wherein, the inlet total temperature and the blowing ratio are considered as flow condition uncertainty parameters and tip clearance is considered as geometrical uncertainty parameters. The uncertainty analysis results show that under the influence of the uncertain geometry and operating conditions, the heat flux of squealer tip basically conforms to the normal distribution and the statistical mean value of it increased by 13.56% relative to the design value and the probability of it deviating from the design value by 10% is as high as 65.68% The statistical average of the squealer tip film cooling effectiveness is reduced by 29.52% compared to the design value, and the probability of it deviating from the design value by 10% is as high as 91.83%. The result of sensitivity analysis reveals that the uncertainty of the aerodynamic characteristics of the squealer tip is almost entirely caused by the tip clearance which accounts for 88.02% of the variance of the leakage flow rate. The inlet total temperature has almost no effect on the uncertainty of the aerodynamic performance. However, it is the dominant variable for the uncertainty of the heat transfer performance considering that its variance indexes for tip heat flux QTip and film cooling effectiveness η are 84.87% and 24.87% respectively. Compared with the main effects, the influence of the interaction effects among the variables on the squealer tip aerothermal performance is almost negligible.

Author(s):  
Christopher N. LeBlanc ◽  
Sridharan Ramesh ◽  
Srinath V. Ekkad ◽  
Mary Anne Alvin

The effect of hole exit shaping on both heat transfer coefficient and film cooling effectiveness of tripod injection holes is examined experimentally on a flat plate. Previously, it has been clearly proven that tripod hole configurations provide at least 50–60% more cooling effectiveness while using 50% less coolant than standard cylindrical and shaped hole exit geometries. Temperature data is collected using infrared thermography at different operating conditions to determine the benefit of shaping the hole exits for an already proven tripod hole configuration. The test rig consists of a rectangular test section with a main stream flow at 7.9 m/s and coolant flow injected through the bottom surface through the film cooling injection holes. A unique transient IR technique has been used to determine both the adiabatic film effectiveness and heat transfer coefficient from a single test. Two different exit shaping have been considered, one with a 5° flare and layback and one with a 10° flare and layback. Results show that exit shaping improves the performance of these tripod holes compared to the cylindrical hole exits. The 10° flare and layback exit performs slightly better than the 5° flare and layback exit.


Author(s):  
Fujuan Tong ◽  
Wenxuan Gou ◽  
Wenjing Gao ◽  
Lei Li ◽  
Zhufeng Yue

An efficient cooling method for the turbine inner casing is essential with the increasing of the turbine inlet temperature. The heat transfer and flow characteristics of a coupled cooling system in the turbine inner casing part, i.e., three rows of impingement jets and film holes, have been studied numerically according to the real turbine operating conditions. Seven inclined angles of the film holes along the mainstream direction (90°, ±60°, ±45°, ±35°) and the impingement jets arrangements have been researched. The positive inclination is that the angle between the fluid flow from the film holes and the mainstream is less than 90°. Otherwise, it would be negative. The numerical validation reveals that the selected computational method can provide a good prediction of the reported experimental results of the impinging-film cooling system. Then the method has been applied in the investigation of the local/average temperature, film-cooling effectiveness, and the flow patterns on the film-cooled surface. The results show that the inclined angle can achieve a significant improvement in the film cooling performance. With the positive inclination of film holes, the average temperature of the interaction surface between the mainstream and the turbine inner casing can decrease 50K compared with that of 90°. And the average temperature on the interaction surface with the negative inclined angle can even be reduced by more than 100K. Additionally, the average film-cooling effectiveness can be increased by up to 31.79%. Such results prove that decreasing the value of inclined angle can achieve a better heat transfer performance. Moreover, the negative inclination of film holes can improve the uniformity of the film-cooling effect. On the other hand, the influence of impingement jets arrangements on the film cooling behavior is negligible. Further analysis of the flow streamline illustrates that the coolant jet from the inclined film holes can attach to the interaction surface more firmly, which will achieve a better protection away from the high-temperature turbine gas. The research will provide direct guidance for the cooling design of the turbine inner casing and improve the thermal efficiency of the gas turbine system.


2016 ◽  
Vol 138 (10) ◽  
Author(s):  
A. Arisi ◽  
J. Phillips ◽  
W. F. Ng ◽  
S. Xue ◽  
H. K. Moon ◽  
...  

Detailed heat transfer coefficient (HTC) and film cooling effectiveness (Eta) distribution on a squealer-tipped first stage rotor blade were measured using an infrared technique. The blade tip design, obtained from the Solar Turbines, Inc., gas turbine, consists of double purge hole exits and four ribs within the squealer cavity, with a bleeder exit port on the pressure side close to the trailing edge. The tests were carried out in a transient linear transonic wind tunnel facility under land-based engine representative Mach/Reynolds number. Measurements were taken at an inlet turbulent intensity of Tu = 12%, with exit Mach numbers of 0.85 (Reexit = 9.75 × 105) and 1.0 (Reexit = 1.15 × 106) with the Reynolds number based on the blade axial chord and the cascade exit velocity. The tip clearance was fixed at 1% (based on engine blade span) with a purge flow blowing ratio, BR = 1.0. At each test condition, an accompanying numerical study was performed using Reynolds-averaged Navier–Stokes (RANS) equations solver ansys fluent to further understand the tip flow characteristics. The results showed that the tip purge flow has a blocking effect on the leakage flow path. Furthermore, the ribs significantly altered the flow (and consequently heat transfer) characteristics within the squealer-tip cavity resulting in a significant reduction in film cooling effectiveness. This was attributed to increased coolant–leakage flow mixing due to increased recirculation within the squealer cavity. Overall, the peak HTC on the cavity floor increased with exit Mach/Reynolds number.


Author(s):  
Sakshi Jain ◽  
Arnab Roy ◽  
Wing Ng ◽  
Srinath Ekkad ◽  
Andrew S. Lohaus ◽  
...  

The present article investigates mixed out aerodynamic loss coefficient measurements for a high turning, contoured endwall passage under transonic operating conditions in presence of upstream purge slot and mateface gap. The upstream purge slot represents the gap between stator-rotor interface and the mateface gap simulates the assembly feature between adjacent airfoils in an actual high pressure turbine stage. While the performance of the mateface and upstream slot has been studied for lower Mach number, no studies exist in literature for transonic flow conditions. Experiments were performed at the Virginia Tech’s linear, transonic blow down cascade facility. Measurements were carried out at design conditions (isentropic exit Mach number of 0.88, design incidence) without and with coolant blowing. Upstream leakage flow of 1.0% coolant to mainstream mass flow ratio (MFR) was considered with the presence of mateface gap. There was no coolant blowing through the mateface gap itself. Cascade exit pressure measurements were carried out using a 5-hole probe traverse at a plane 1.0-Cax downstream of the trailing edge. Spanwise measurements were performed to complete the entire 2D loss plane from endwall to midspan, which were used to plot pitchwise averaged losses for different span locations and loss contours for the passage. Results reveal significant reduction in aerodynamic losses using the contoured endwall due to the modification of flow physics compared to a non-contoured planar endwall. The heat transfer experiments, designed to find the heat transfer coefficient and the film cooling effectiveness are described in detail in a separate paper [1].


Author(s):  
J. F. Louis ◽  
G. N. Goulios ◽  
A. M. Demirjian ◽  
R. F. Topping ◽  
J. M. Wiedhopf

Short duration studies of heat transfer and film cooling effectiveness were made using a shock tunnel and a blowdown facility. In these short duration tests, flow and temperature modeling were used to determine the Nusselt number for a given set of Reynolds number, Mach number and temperature ratios representative of turbine operating conditions. Shock tunnel techniques were used to determine the isothermal effectiveness of coolant injection through slots and patterns of holes located in flat and curved surfaces. In the turbine blowdown facility, the Nusselt number at the shroud (engine seal) was determined for a wide range of operating conditions. Strong secondary flow and centrifugal effects were found to increase the Nusselt number significantly over the level associated with one-dimensional convectional heat transfer for a turbulent flow. Using shock tunnel and uncooled turbine data, a particular film cooling configuration was selected for the turbine shroud under investigation. The investigation on the film cooled stationary shroud gave encouraging results as to the applicability of two-dimensional film cooling data to the three-dimensional heat transfer at the shroud and as to the use of film cooled shrouds in advanced turbines.


Author(s):  
M. Ghorab ◽  
S. I. Kim ◽  
I. Hassan

Cooling techniques play a key role in improving efficiency and power output of modern gas turbines. The conjugate technique of film and impingement cooling schemes is considered in this study. The Multi-Stage Cooling Scheme (MSCS) involves coolant passing from inside to outside turbine blade through two stages. The first stage; the coolant passes through first hole to internal gap where the impinging jet cools the external layer of the blade. Finally, the coolant passes through the internal gap to the second hole which has specific designed geometry for external film cooling. The effect of design parameters, such as, offset distance between two-stage holes, gap height, and inclination angle of the first hole, on upstream conjugate heat transfer rate and downstream film cooling effectiveness performance are investigated computationally. An Inconel 617 alloy with variable properties is selected for the solid material. The conjugate heat transfer and film cooling characteristics of MSCS are analyzed across blowing ratios of Br = 1 and 2 for density ratio, 2. This study presents upstream wall temperature distributions due to conjugate heat transfer for different gap design parameters. The maximum film cooling effectiveness with upstream conjugate heat transfer is less than adiabatic film cooling effectiveness by 24–34%. However, the full coverage of cooling effectiveness in spanwise direction can be obtained using internal cooling with conjugate heat transfer, whereas adiabatic film cooling effectiveness has narrow distribution.


Energy ◽  
2014 ◽  
Vol 72 ◽  
pp. 331-343 ◽  
Author(s):  
Jun Su Park ◽  
Dong Hyun Lee ◽  
Dong-Ho Rhee ◽  
Shin Hyung Kang ◽  
Hyung Hee Cho

2003 ◽  
Vol 125 (4) ◽  
pp. 648-657 ◽  
Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Experimental investigations were performed to measure the detailed heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade in a five-bladed linear cascade. The blade was a two-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The test blade had a squealer (recessed) tip with a 4.22% recess. The blade model was equipped with a single row of film cooling holes on the pressure side near the tip region and the tip surface along the camber line. Hue detection based transient liquid crystals technique was used to measure heat transfer coefficients and film cooling effectiveness. All measurements were done for the three tip gap clearances of 1.0%, 1.5%, and 2.5% of blade span at the two blowing ratios of 1.0 and 2.0. The Reynolds number based on cascade exit velocity and axial chord length was 1.1×106 and the total turning angle of the blade was 97.9 deg. The overall pressure ratio was 1.2 and the inlet and exit Mach numbers were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. Results showed that the overall heat transfer coefficients increased with increasing tip gap clearance, but decreased with increasing blowing ratio. However, the overall film cooling effectiveness increased with increasing blowing ratio. Results also showed that the overall film cooling effectiveness increased but heat transfer coefficients decreased for the squealer tip when compared to the plane tip at the same tip gap clearance and blowing ratio conditions.


2004 ◽  
Vol 10 (5) ◽  
pp. 345-354 ◽  
Author(s):  
Jan Dittmar ◽  
Achmed Schulz ◽  
Sigmar Wittig

The demand of improved thermal efficiency and high power output of modern gas turbine engines leads to extremely high turbine inlet temperature and pressure ratios. Sophisticated cooling schemes including film cooling are widely used to protect the vanes and blades of the first stages from failure and to achieve high component lifetimes. In film cooling applications, injection from discrete holes is commonly used to generate a coolant film on the blade's surface.In the present experimental study, the film cooling performance in terms of the adiabatic film cooling effectiveness and the heat transfer coefficient of two different injection configurations are investigated. Measurements have been made using a single row of fanshaped holes and a double row of cylindrical holes in staggered arrangement. A scaled test model was designed in order to simulate a realistic distribution of Reynolds number and acceleration parameter along the pressure side surface of an actual turbine guide vane. An infrared thermography measurement system is used to determine highly resolved distribution of the models surface temperature. Anin-situcalibration procedure is applied using single embedded thermocouples inside the measuring plate in order to acquire accurate local temperature data.All holes are inclined 35° with respect to the model's surface and are oriented in a streamwise direction with no compound angle applied. During the measurements, the influence of blowing ratio and mainstream turbulence level on the adiabatic film cooling effectiveness and heat transfer coefficient is investigated for both of the injection configurations.


Author(s):  
Bo-lun Zhang ◽  
Li Zhang ◽  
Hui-ren Zhu ◽  
Jian-sheng Wei ◽  
Zhong-yi Fu

Film cooling performance of the double-wave trench was numerically studied to improve the film cooling characteristics. Double-wave trench was formed by changing the leading edge and trailing edge of transverse trench into cosine wave. The film cooling characteristics of transverse trench and double-wave trench were numerically studied using Reynolds Averaged Navier Stokes (RANS) simulations with realizable k-ε turbulence model and enhanced wall treatment. The film cooling effectiveness and heat transfer coefficient of double-wave trench at different trench width (W = 0.8D, 1.4D, 2.1D) conditions are investigated, and the distribution of temperature field and flow field were analyzed. The results show that double-wave trench effectively improves the film cooling effectiveness and the uniformity of jet at the downstream wall of the trench. The span-wise averaged film cooling effectiveness of the double-wave trench model increases 20–63% comparing with that of the transverse trench at high blowing ratio. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the double-wave trench width decreasing, the film cooling effectiveness gradually reduces at the hole center-line region of the downstream trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient increases. The span-wise averaged heat transfer coefficient of the double-wave trench with 0.8D and 2.1D trench width is higher than that of the double-wave trench with 1.4D trench width at the high blowing ratio conditions.


Sign in / Sign up

Export Citation Format

Share Document