A Lesson on Operationalizing Machine Learning for Predictive Maintenance of Gas Turbines

2021 ◽  
Author(s):  
Paolo Pileggi ◽  
Elena Lazovik ◽  
Ron Snijders ◽  
Lars-Uno Axelsson ◽  
Sietse Drost ◽  
...  

Abstract OEMs, service providers and end-users are moving from preventative to predictive maintenance to minimize the risk of unwanted power plant shut-downs and to maximize profitability. Digital Twin and Machine Learning (ML) are important techniques in this transformation as it complements and improves the traditional expert-based knowledge systems. There is a continued trend to use data-driven, so-called black-box, ML techniques as an improvement over traditional statistical approaches. However, these ML approaches suffer from low interpretability or explainability, making it hard to trust how or why a certain anomaly in the system is detected, limiting the trust in the prediction and making it much less likely to identify the real original cause of the problem. In this paper, we present our lesson learnt from operationalizing ML in a real-world use case that studied data from the 1.85 MWe OPRA OP16 all radial single-shaft gas turbine. We comment on the unforeseen obstacles we uncovered during our ML anomaly detection application and juxtapose them with the high potential value that our novel ML applications and explanation method can provide. ML may be enticing for the predictive maintenance of gas turbines but our lesson makes it clear that operationalizing ML goes beyond merely algorithm specifics. In line with the nature of the Digital Twin, it requires careful consideration of the specialized IT system supporting the algorithm, and the specific process it supports and in which it is deployed.

2021 ◽  
pp. 1-7
Author(s):  
Nick Petro ◽  
Felipe Lopez

Abstract Aeroderivative gas turbines have their combustion set points adjusted periodically in a process known as remapping. Even turbines that perform well after remapping may produce unacceptable behavior when external conditions change. This article introduces a digital twin that uses real-time measurements of combustor acoustics and emissions in a machine learning model that tracks recent operating conditions. The digital twin is leveraged by an optimizer that select adjustments that allow the unit to maintain combustor dynamics and emissions in compliance without seasonal remapping. Results from a pilot site demonstrate that the proposed approach can allow a GE LM6000PD unit to operate for ten months without seasonal remapping while adjusting to changes in ambient temperature (4 - 38 °C) and to different fuel compositions.


2021 ◽  
Author(s):  
Senthil Krishnababu ◽  
Omar Valero ◽  
Roger Wells

Abstract Data driven technologies are revolutionising the engineering sector by providing new ways of performing day to day tasks through the life cycle of a product as it progresses through manufacture, to build, qualification test, field operation and maintenance. Significant increase in data transfer speeds combined with cost effective data storage, and ever-increasing computational power provide the building blocks that enable companies to adopt data driven technologies such as data analytics, IOT and machine learning. Improved business operational efficiency and more responsive customer support provide the incentives for business investment. Digital twins, that leverages these technologies in their various forms to converge physics and data driven models, are therefore being widely adopted. A high-fidelity multi-physics digital twin, HFDT, that digitally replicates a gas turbine as it is built based on part and build data using advanced component and assembly models is introduced. The HFDT, among other benefits enables data driven assessments to be carried out during manufacture and assembly for each turbine allowing these processes to be optimised and the impact of variability or process change to be readily evaluated. On delivery of the turbine and its associated HFDT to the service support team the HFDT supports the evaluation of in-service performance deteriorations, the impact of field interventions and repair and the changes in operating characteristics resulting from overhaul and turbine upgrade. Thus, creating a cradle to grave physics and data driven twin of the gas turbine asset. In this paper, one branch of HFDT using a power turbine module is firstly presented. This involves simultaneous modelling of gas path and solid using high fidelity CFD and FEA which converts the cold geometry to hot running conditions to assess the impact of various manufacturing and build variabilities. It is shown this process can be executed within reasonable time frames enabling creation of HFDT for each turbine during manufacture and assembly and for this to be transferred to the service team for deployment during field operations. Following this, it is shown how data driven technologies are used in conjunction with the HFDT to improve predictions of engine performance from early build information. The example shown, shows how a higher degree of confidence is achieved through the development of an artificial neural network of the compressor tip gap feature and its effect on overall compressor efficiency.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5739
Author(s):  
Narjes Davari ◽  
Bruno Veloso ◽  
Gustavo de Assis Costa ◽  
Pedro Mota Pereira ◽  
Rita P. Ribeiro ◽  
...  

In the last few years, many works have addressed Predictive Maintenance (PdM) by the use of Machine Learning (ML) and Deep Learning (DL) solutions, especially the latter. The monitoring and logging of industrial equipment events, like temporal behavior and fault events—anomaly detection in time-series—can be obtained from records generated by sensors installed in different parts of an industrial plant. However, such progress is incipient because we still have many challenges, and the performance of applications depends on the appropriate choice of the method. This article presents a survey of existing ML and DL techniques for handling PdM in the railway industry. This survey discusses the main approaches for this specific application within a taxonomy defined by the type of task, employed methods, metrics of evaluation, the specific equipment or process, and datasets. Lastly, we conclude and outline some suggestions for future research.


2020 ◽  
Vol 4 (3) ◽  
pp. 92
Author(s):  
André Hürkamp ◽  
Sebastian Gellrich ◽  
Tim Ossowski ◽  
Jan Beuscher ◽  
Sebastian Thiede ◽  
...  

The design and development of composite structures requires precise and robust manufacturing processes. Composite materials such as fiber reinforced thermoplastics (FRTP) provide a good balance between manufacturing time, mechanical performance and weight. In this contribution, we investigate the process combination of thermoforming FRTP sheets (organo sheets) and injection overmolding of short FRTP for automotive structures. The limiting factor in those structures is the bond strength between the organo sheet and the overmolded thermoplastic. Within this process chain, even small deviations of the process settings (e.g., temperature) can lead to significant defects in the structure. A cyber physical production system based framework for a digital twin combining simulation and machine learning is presented. Based on parametric Finite-Element-Method (FEM) studies, training data for machine learning methods are generated and a FEM surrogate is developed. A comparison of different data-driven methods yields information on the estimation accuracy of task-specific data-driven methods. Finally, in accordance with experimental cross tension tests, the investigated FEM surrogate model is able to predict the interface bond strength quality in dependence of the process settings. The visualization into different quality domains qualifies the presented approach as decision support.


2021 ◽  
pp. 109-119
Author(s):  
Francesco Del Buono ◽  
Francesca Calabrese ◽  
Andrea Baraldi ◽  
Matteo Paganelli ◽  
Alberto Regattieri

Sign in / Sign up

Export Citation Format

Share Document