Correlating Cavity Sealing Effectiveness to Time-Resolved Rim Seal Events in the Presence of Vane Trailing Edge Flow

2021 ◽  
Author(s):  
Shawn Siroka ◽  
Iván Monge-Concepción ◽  
Reid A. Berdanier ◽  
Michael D. Barringer ◽  
Karen A. Thole ◽  
...  

Abstract The cavity region between the rotor and stator relies on hardware seals and purge flow to discourage hot gas path air from being ingested into the unprotected wheel space. However, ingestion can occur due to a combination of disk pumping, periodic vane-blade interactions, and three-dimensional seal geometry effects. These mechanisms create flow instabilities that are detrimental to cavity seal performance under certain conditions. In this paper, a one-stage turbine operating at engine representative conditions was utilized to study the effect of steady and time-resolved under-platform cavity temperatures and pressures across a range of coolant flow rates in the presence of vane trailing edge (VTE) flow. This study correlates time-resolved pressure with time-resolved temperature to identify primary frequencies driving ingestion. At certain flow rates, the time-resolved pressures are out of phase with the temperatures, indicating ingestion. These same flow rates were found to correlate to an inflection region in the cooling effectiveness curve where the maximum amplitude of the time-varying behavior coincides with the cooling effectiveness inflection point. Using a time-accurate computational model, simulations near this inflection region illustrate ingestion of high-swirl VTE flow into the cavity region which creates a buffer in the rim seal between swirled main gas path flow and axially injected purge coolant helping to suppress the amplitude of time-resolved behavior.

2021 ◽  
Author(s):  
Iván Monge-Concepción ◽  
Shawn Siroka ◽  
Reid A. Berdanier ◽  
Michael D. Barringer ◽  
Karen A. Thole ◽  
...  

Abstract Hot gas ingestion into the turbine rim seal cavity is an important concern for engine designers. To prevent ingestion, rim seals use high pressure purge flow but excessive use of the purge flow decreases engine thermal efficiency. A single stage test turbine operating at engine-relevant conditions with real engine hardware was used to study time-resolved pressures in the rim seal cavity across a range of sealing purge flow rates. Vane trailing edge (VTE) flow, shown previously to be ingested into the rim seal cavity, was also included to understand its effect on the unsteady flow field. Measurements from high-frequency response pressure sensors in the rim seal and vane platform were used to determine rotational speed and quantity of large-scale structures (cells). In a parallel effort, a computational model using Unsteady Reynolds-averaged Navier-Stokes (URANS) was applied to determine swirl ratio in the rim seal cavity and time-resolved rim sealing effectiveness. The experimental results confirm that at low purge flow rates, the VTE flow influences the unsteady flow field by decreasing pressure unsteadiness in the rim seal cavity. Results show an increase in purge flow increases the number of unsteady large-scale structures in the rim seal and decreases their rotational speed. However, VTE flow was shown to not significantly change the cell speed and count in the rim seal. Simulations point to the importance of the large-scale cell structures in influencing rim sealing unsteadiness, which is not captured in current rim sealing predictive models.


Author(s):  
M. Rabs ◽  
F.-K. Benra ◽  
H. J. Dohmen ◽  
O. Schneider

The present paper gives a contribution to a better understanding of the flow at the rim and in the wheel space of gas turbines. Steady state and time-accurate numerical simulations with a commercial Navier-Stokes solver for a 1.5 stage turbine similar to the model treated in the European Research Project ICAS-GT were conducted. In the framework of a numerical analysis, a validation with experimental results of the test rig at the Technical University of Aachen will be given. In preceding numerical investigations of realistic gas turbine rim cavities with a simplified treatment of the hot gas path (modelling of the main flow path without blades and vanes), so called Kelvin-Helmholtz vortices were found in the area of the gap when using appropriate boundary conditions. The present work shows that these flow instabilities also occur in a 1.5 stage gas turbine model with consideration of the blades and vanes. Therefore, several simulations with different sealing air mass flow rates (CW 7000, 20000, 30000) have been conducted. The results show, that for high sealing air mass flow rates Kelvin-Helmholtz Instabilities are developing. These vortices significantly coin the flow at the rim.


Author(s):  
M. Pau ◽  
G. Paniagua

Ensuring an adequate life of high pressure turbines requires efficient cooling methods, such as rim seal flow ejection from the stator-rotor wheel space cavity interface, which prevents hot gas ingress into the rotor disk. The present work addresses the potential to improve the efficiency in transonic turbines at certain rim seal ejection rates. To understand this process a numerical study was carried out combining computational fluid dynamic simulations (CFD) and experiments on a single stage axial test turbine. The three dimensional steady CFD analysis was performed modeling the purge cavity flow ejected downstream of the stator blade row, at three flow regimes, subsonic M2 = 0.73, transonic M2 = 1.12 and supersonic M2 = 1.33. Experimental static pressure measurements were used to calibrate the computational model. The main flow field-purge flow interaction is found to be governed by the vane shock structures at the stator hub. The interaction between the vane shocks at the hub and the purge flow has been studied and quantitatively characterized as function of the purge ejection rate. The ejection of 1% of the core flow from the rim seal cavity leads to an increase of the hub static pressure of approximately 7% at the vane trailing edge. This local reduction of the stator exit Mach number decreases the trailing edge losses in the transonic regime. Finally, a numerically predicted loss breakdown is presented, focusing on the relative importance of the trailing edge losses, boundary layer losses, shock losses and mixing losses, as a function of the purge rate ejected. Contrary to the experience in subsonic turbines, results in a transonic model demonstrate that ejecting purge flow improves the vane efficiency due to the shock structures modification downstream of the stator.


Author(s):  
Dieter Bohn ◽  
Bernd Rudzinski ◽  
Norbert Sürken ◽  
Wolfgang Gärtner

The ingestion of hot gas at the rim seal of a turbine has been investigated for a complete stage with nozzle guide vanes and rotor blades for two types of geometry: 1. the simple axial gap between a flat rotor disk and a flat stator disk, commonly used for industrial gas turbines and 2. an axial lip of the rim seal on the stator combined with a flat rotor disk, often found in aero engine applications. The clearance of the axial gap has been varied for the second type. The efficiency of the rim seal has been examined for different seal flow rates, rotational Reynolds numbers and Mach numbers in the main flow. For the determination of the sealing effectiveness carbon dioxide gas concentration measurements have been carried out in the wheelspace. The distribution of the static pressure in the vicinity of the seal and inside the wheelspace has been measured by means of pressure taps at the stator disk. It is shown that the external flow Mach number in the main flow has a significant effect on the sealing efficiency. As Mach number increases sealing efficiency goes down. The rotational Reynolds number has a distinct effect on the rim seal efficiency depending on the examined configuration. Even for high seal flow rates the ingestion of hot gas can not be fully avoided. The experimental results were the motivation for a three-dimensional CFD approach neglecting the influence of the rotor blades. The results give further insight into aerodynamic features of the ingestion phenomenon.


2021 ◽  
pp. 1-53
Author(s):  
Kedar P. Nawathe ◽  
Rui Zhu ◽  
Enci Lin ◽  
Yong Kim ◽  
Terrence Simon

Abstract The stators of the first stage of a gas turbine are exposed to severe temperatures. The coolant streams introduced to prevent the stators from thermal damage further complicate the highly three-dimensional vane passage flow. Recent results have shown that the coolant streams injected for cooling the combustor also influence the flow physics and the cooling effectiveness in the first-stage stator vanes passage. However, the effects of changing the mass flow rate of these combustor coolant streams on the passage flowfield have not been studied. As understanding the coolant transport is necessary for analyzing changes in cooling effectiveness in the vane passage, detailed aerodynamic and thermal measurements along the whole vane passage are required. This two-part paper presents such measurements taken for a variety of combustor coolant and endwall film coolant flow rates. The experiments were conducted in a low-Mach-number facility with engine-representative Reynolds numbers and large-scale high-level turbulence. The objective of the first part is to describe the flow that influences endwall and vane surface cooling effectiveness distributions, which are presented in the second part. The measurements show changes in the passage flowfield due to changes in both combustor coolant and endwall film coolant flow rates. Overall, the flow-physics remains largely unaffected by changes in coolant flow rates except in the endwall-vane surfaces region where the combustor coolant flow rate dominates changes in coolant transport. This is shown to have a high impact on endwall and vane surface cooling.


Author(s):  
Guillaume Boutet-Blais ◽  
Julie Lefrancois ◽  
Guy Dumas ◽  
Steve Julien ◽  
Jean-Francois Harvey ◽  
...  

This paper reports the first phase of an investigation aiming to determine the validity of using a CO2 marker in cold rig experiments to characterize the thermal performances of turbine rim seals under actual engine operating conditions. For comparison purposes, simulations are carried out for two sets of operating conditions, namely cold rig (with uniform low temperature) and real turbine thermal conditions (high temperature gaspath and cold purge flow). Sealing effectiveness based on the CO2 diagnostic under cold rig operating conditions is compared to sealing effectiveness based on the computed temperature field under real engine temperature conditions. Unsteady RANS simulations with different purge flow rates are performed. Tested geometries include a 180° domain presenting a simplified rim seal geometry with no vanes nor blades in the gaspath, and a 24° sector of a complete turbine stage including 3 vanes and 4 blades. Three-dimensional flow structures known to affect ingestion are found with both geometries but appear to be sensitive to the differences in operating conditions. Indeed, their circumferential number and strength differ between the two scenarios of conditions. Furthermore, it is found that the cold rig predictor tends to slightly overestimate the sealing effectiveness, while providing nonetheless the right trends and reasonably accurate average values in levels of actual sealing. At this stage of the investigation, we conclude that it seems adequate to use a passive tracer in cold rig experiments to compare performances of rim seal designs.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Julia Ling ◽  
Sayuri D. Yapa ◽  
Michael J. Benson ◽  
Christopher J. Elkins ◽  
John K. Eaton

Measurements of the 3D velocity and concentration fields were obtained using magnetic resonance imaging for a pressure-side cutback film cooling experiment. The cutback geometry consisted of rectangular slots separated by straight lands; inside each of the slots was an airfoil-shaped blockage. The results from this trailing edge configuration, the “island airfoil,” are compared to the results obtained with the “generic airfoil,” a geometry with narrower slots, wider, tapered lands, and no blockages. The objective was to determine how the narrower lands and internal blockages affected the average film cooling effectiveness and the spanwise uniformity. Velocimetry data revealed that strong horseshoe vortices formed around the blockages in the slots, which resulted in greater coolant nonuniformity on the airfoil breakout surface and in the wake. The thinner lands of the island airfoil allowed the coolant to cover a larger fraction of the trailing edge span, giving a much higher spanwise-averaged surface effectiveness, especially near the slot exit where the generic airfoil lands are widest.


2003 ◽  
Vol 125 (1) ◽  
pp. 1-13 ◽  
Author(s):  
R. J. Miller ◽  
R. W. Moss ◽  
R. W. Ainsworth ◽  
C. K. Horwood

This paper describes the time-varying aerodynamic interaction mechanisms that have been observed within a transonic high-pressure turbine stage; these are inferred from the time-resolved behavior of the rotor exit flow field. It contains results both from an experimental program in a turbine test facility and from numerical predictions. Experimental data was acquired using a fast-response aerodynamic probe capable of measuring Mach number, whirl angle, pitch angle, total pressure, and static pressure. A 3-D time-unsteady viscous Navier-Stokes solver was used for the numerical predictions. The unsteady rotor exit flowfield is formed from a combination of four flow phenomena: the rotor wake, the rotor trailing edge recompression shock, the tip-leakage flow, and the hub secondary flow. This paper describes the time-resolved behavior of each phenomenon and discusses the interaction mechanisms from which each originates. Two significant vane periodic changes (equivalent to a time-varying flow in the frame of reference of the rotor) in the rotor exit flowfield are identified. The first is a severe vane periodic fluctuation in flow conditions close to the hub wall and the second is a smaller vane periodic fluctuation occurring at equal strength over the entire blade span. These two regions of periodically varying flow are shown to be caused by two groups of interaction mechanisms. The first is thought to be caused by the interaction between the wake and secondary flow of the vane with the downstream rotor; and the second is thought to be caused by a combination of the interaction of the vane trailing edge recompression shock with the rotor, and the interaction between the vane and rotor potential fields.


Author(s):  
Kenneth Clark ◽  
Michael Barringer ◽  
David Johnson ◽  
Karen Thole ◽  
Eric Grover ◽  
...  

Secondary air is bled from the compressor in a gas turbine engine to cool turbine components and seal the cavities between stages. Unsealed cavities can lead to hot gas ingestion, which can degrade critical components or, in extreme cases, can be catastrophic to engines. For this study, a 1.5 stage turbine with an engine-realistic rim seal was operated at an engine-relevant axial Reynolds number, rotational Reynolds number, and Mach number. Purge flow was introduced into the inter-stage cavity through distinct purge holes for two different configurations. This paper compares the two configurations over a range of purge flow rates. Sealing effectiveness measurements, deduced from the use of CO2 as a flow tracer, indicated that the sealing characteristics were improved by increasing the number of uniformly distributed purge holes and improved by increasing levels of purge flow. For the larger number of purge holes, a fully sealed cavity was possible while for the smaller number of purge holes, a fully sealed cavity was not possible. For this representative cavity model, sealing effectiveness measurements were compared with a well-accepted orifice model derived from simplified cavity models. Sealing effectiveness levels at some locations within the cavity were well-predicted by the orifice model, but due to the complexity of the realistic rim seal and the purge flow delivery, the effectiveness levels at other locations were not well-predicted.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Ahmed Khalil ◽  
Hatem Kayed ◽  
Abdallah Hanafi ◽  
Medhat Nemitallah ◽  
Mohamed Habib

This work investigates the performance of film-cooling on trailing edge of gas turbine blades using unsteady three-dimensional numerical model adopting large eddy simulation (LES) turbulence scheme in a low Mach number flow regime. This study is concerned with the scaling parameters affecting effectiveness and heat transfer performance on the trailing edge, as a critical design parameter, of gas turbine blades. Simulations were performed using ANSYS-fluentworkbench 17.2. High quality mesh was adapted, whereas the size of cells adjacent to the wall was optimized carefully to sufficiently resolve the boundary layer to obtain insight predictions of the film-cooling effectiveness on a flat plate downstream the slot opening. Blowing ratio, density ratio, Reynolds number, and the turbulence intensity of the mainstream and coolant flow are optimally examined against the film-cooling effectiveness. The predicted results showed a great agreement when compared with the experiments. The results show a distinctive behavior of the cooling effectiveness with blowing ratio variation as it has a dip in vicinity of unity which is explained by the behavior of the vortex entrainment and momentum of coolant flow. The negative effect of the turbulence intensity on the cooling effectiveness is demonstrated as well.


Sign in / Sign up

Export Citation Format

Share Document