CFD Simulation of Ducted Dual Rotor Wind Turbine for Small-Scale Applications

Author(s):  
Amr Mohamed ◽  
Ahmed El-Baz ◽  
Nabil Mahmoud ◽  
Ashraf Hamed ◽  
Ahmed El-kohly

Abstract Due to growing needs for energy in our life, research in the wind energy field has increased significantly. There has been global concern towards the development of smart techniques and devices that could optimize the energy conversion and maximize the output power from the wind. Investigating such alternative solutions are required in order to meet the continuous increase in the power demand. The Dual Rotor Wind Turbine system (DRWT) offers higher energy extraction rates from the wind. In the present study, it is proposed to utilize the dual rotor configuration in a ducted system using wind lens in order to enable its application in regions of low wind speeds. The aerodynamic performance of ducted dual rotor wind turbine is investigated using CFD to solve three dimensional, turbulent-steady incompressible flow equations, using the k-ε Realizable and k-ω shear stress transport (SST) turbulence models. Several difficulties due to complexity of geometry and meshing requirements have been encountered. Mesh independence study was conducted to ensure the accuracy and validate the results. Power curves were obtained, detailed investigation of the wind turbine performance in different configurations are highlighted in order to explore the benefit and effect of each configuration to the output power. The final results of combined configuration for dual rotor wind turbine (DRWT) with lens show a considerable improvement to the performance of wind turbine over wide range of wind speeds.

2017 ◽  
Vol 28 (3) ◽  
pp. 79 ◽  
Author(s):  
Gareth Erfort ◽  
Theodor Willem Von Backström ◽  
Gerhard Venter

Wind conditions in South Africa are suitable for small-scale wind turbines, with wind speeds below 7 m.s−1. This investigation is about a methodology to optimise a full wind turbine using a surrogate model. A previously optimised turbine was further optimised over a range of wind speeds in terms of a new parameterisation methodology for the aerodynamic profile of the turbine blades, using non-uniform rational B-splines to encompass a wide range of possible shapes. The optimisation process used a genetic algorithm to evaluate an input vector of 61 variables, which fully described the geometry, wind conditions and rotational speed of the turbine. The optimal performance was assessed according to a weighted coefficient of power, which rated the turbine blade’s ability to extract power from the available wind stream. This methodology was validated using XFOIL to assess the final solution. The results showed that the surrogate model was successful in providing an optimised solution and, with further refinement, could increase the coefficient of power obtained.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3622 ◽  
Author(s):  
Md Rasel Sarkar ◽  
Sabariah Julai ◽  
Chong Wen Tong ◽  
Moslem Uddin ◽  
M.F. Romlie ◽  
...  

The production of maximum wind energy requires controlling various parts of medium to large-scale wind turbines (WTs). This paper presents a robust pitch angle control system for the rated wind turbine power at a wide range of simulated wind speeds by means of a proportional–integral–derivative (PID) controller. In addition, ant colony optimization (ACO), particle swarm optimization (PSO), and classical Ziegler–Nichols (Z-N) algorithms have been used for tuning the PID controller parameters to obtain within rated stable output power of WTs from fluctuating wind speeds. The proposed system is simulated under fast wind speed variation, and its results are compared with those of the PID-ZN controller and PID-PSO to verify its effeteness. The proposed approach contains several benefits including simple implementation, as well as tolerance of turbine parameters and several nonparametric uncertainties. Robust control of the generator output power with wind-speed variations can also be considered a significant advantage of this strategy. Theoretical analyses, as well as simulation results, indicate that the proposed controller can perform better in a wide range of wind speed compared with the PID-ZN and PID-PSO controllers. The WT model and hybrid controllers (PID-ACO and PID-PSO) have been developed in MATLAB/Simulink with validated controller models. The hybrid PID-ACO controller was found to be the most suitable in comparison to the PID-PSO and conventional PID. The root mean square (RMS) error calculated between the desired power and the WT’s output power with PID-ACO is found to be 0.00036, which is the smallest result among the studied controllers.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Nishant Mishra ◽  
Anand Sagar Gupta ◽  
Jishnav Dawar ◽  
Alok Kumar ◽  
Santanu Mitra

Darrieus type vertical axis wind turbines (VAWT) are being used commercially nowadays; however, they still need to improve in terms of performance as they work in an urban environment where the wind speeds are low and the gusts are frequent. The aerodynamic performance of Darrieus turbine is highly affected by the wingtip vortices. This paper attempts at analyzing and comparing the performance of Darrieus with the use of various wingtip devices. Attempts have also been made to find out optimal working parameters by studying the flow through turbines with different tip speed ratios and different inlet wind speeds. A comparative computational fluid dynamics (CFD) simulation was performed on a small-scale, straight-bladed Darrieus rotor vertical axis wind turbine, with a large stationary domain and a small rotating subdomain using sliding mesh technique. Comparison of the performance of end tip device that can be used against a baseline rotor configuration is done, with the aim of identifying the best tip architecture. The main focus lies on building an experimental setup to validate the results obtained with the CFD simulation and to compare the performance with and without wingtip device. VAWTs with wingtip device show very promising results compared to the baseline model.


2020 ◽  
Vol 37 ◽  
pp. 63-71
Author(s):  
Yui-Chuin Shiah ◽  
Chia Hsiang Chang ◽  
Yu-Jen Chen ◽  
Ankam Vinod Kumar Reddy

ABSTRACT Generally, the environmental wind speeds in urban areas are relatively low due to clustered buildings. At low wind speeds, an aerodynamic stall occurs near the blade roots of a horizontal axis wind turbine (HAWT), leading to decay of the power coefficient. The research targets to design canards with optimal parameters for a small-scale HAWT system operated at variable rotational speeds. The design was to enhance the performance by delaying the aerodynamic stall near blade roots of the HAWT to be operated at low wind speeds. For the optimal design of canards, flow fields of the sample blades with and without canards were both simulated and compared with the experimental data. With the verification of our simulations, Taguchi analyses were performed to seek the optimum parameters of canards. This study revealed that the peak performance of the optimized canard system operated at 540 rpm might be improved by ∼35%.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Prachi R. Prabhukhot ◽  
Aditya R. Prabhukhot

The power generated in wind turbine depends on wind speed and parameters of blade geometry like aerofoil shape, blade radius, chord length, pitch angle, solidity, etc. Aerofoil selection is the crucial factor in establishing the efficient wind turbine. More than one aerofoil in a blade can increase the efficiency further. Previous studies of different aerofoils have shown that efficiency of small scale wind turbine increases when NREL S822 aerofoil is used for wind speed on and above 10 m/s. This paper introduces a study on effect of low wind speed (V = 5 m/s) on performance of blade profile. Aerofoils NREL S822/S823 are used for microwind turbine with S823 near root and S822 near tip. Blade of 3 m radius with spherical tubercles over entire span is analyzed considering 5 deg angle of attack. The computational fluid dynamics (CFD) simulation was carried out using ANSYS fluent to study the behavior of blade profile at various contours. The study shows that blade experiences maximum turbulence and minimum pressure near trailing edge of the tip of blade. The region also experiences maximum velocity of the flow. These factors result in pushing the aerofoil in upward direction for starting the wind turbine to rotate at the speed as low as 5 m/s.


2020 ◽  
Vol 10 (24) ◽  
pp. 9017
Author(s):  
Andoni Gonzalez-Arceo ◽  
Maitane Zirion-Martinez de Musitu ◽  
Alain Ulazia ◽  
Mario del Rio ◽  
Oscar Garcia

In this work, a cost-effective wind resource method specifically developed for the ROSEO-BIWT (Building Integrated Wind Turbine) and other Building Integrated Wind Turbines is presented. It predicts the wind speed and direction at the roof of an previously selected building for the past 10 years using reanalysis data and wind measurements taken over a year. To do so, the reanalysis wind speed data is calibrated against the measurements using different kinds of quantile mapping, and the wind direction is predicted using random forest. A mock-up of a building and a BIWT were used in a wind tunnel to perform a small-scale experiment presented here. It showed that energy production is possible and even enhanced over a wide range of attack angles. The energy production estimations made with the best performing kind of calibration achieved an overall relative error of 6.77% across different scenarios.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2649 ◽  
Author(s):  
Artur Bugała ◽  
Olga Roszyk

This paper presents the results of the computational fluid dynamics (CFD) simulation of the airflow for a 300 W horizontal axis wind turbine, using additional structural elements which modify the original shape of the rotor in the form of multi-shaped bowls which change the airflow distribution. A three-dimensional CAD model of the tested wind turbine was presented, with three variants subjected to simulation: a basic wind turbine without the element that modifies the airflow distribution, a turbine with a plano-convex bowl, and a turbine with a centrally convex bowl, with the hyperbolic disappearance of convexity as the radius of the rotor increases. The momentary value of wind speed, recorded at measuring points located in the plane of wind turbine blades, demonstrated an increase when compared to the base model by 35% for the wind turbine with the plano-convex bowl, for the wind speed of 5 m/s, and 31.3% and 49% for the higher approaching wind speed, for the plano-convex bowl and centrally convex bowl, respectively. The centrally convex bowl seems to be more appropriate for higher approaching wind speeds. An increase in wind turbine efficiency, described by the power coefficient, for solutions with aerodynamic bowls was observed.


2018 ◽  
Vol 7 (3.27) ◽  
pp. 456
Author(s):  
Albi . ◽  
M Dev Anand ◽  
G M. Joselin Herbert

The aerofoils of wind turbine blades have crucial influence on aerodynamic efficiency of wind turbine. There are numerous amounts of research being performed on aerofoils of wind turbines. Initially, I have done a brief literature survey on wind turbine aerofoil. This project involves the selection of a suitable aerofoil section for the proposed wind turbine blade. A comprehensive study of the aerofoil behaviour is implemented using 2D modelling. NACA 4412 aerofoil profile is considered for analysis of wind turbine blade. Geometry of this aerofoil is created using GAMBIT and CFD analysis is carried out using ANSYS FLUENT. Lift and Drag forces along with the angle of attack are the important parameters in a wind turbine system. These parameters decide the efficiency of the wind turbine. The lift force and drag force acting on aerofoil were determined with various angles of attacks ranging from 0° to 12° and wind speeds. The coefficient of lift and drag values are calculated for 1×105 Reynolds number. The pressure distributions as well as coefficient of lift to coefficient of drag ratio of this aerofoil were visualized. The CFD simulation results show close agreement with those of the experiments, thus suggesting a reliable alternative to experimental method in determining drag and lift.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Ali M. Abdelsalam ◽  
W. A. El-Askary ◽  
M. A. Kotb ◽  
I. M. Sakr

Abstract This article aims to study numerically the effect of curvature of linear blade profile on the performance of small-scale horizontal axis wind turbine (SSHAWT). Rotors with two curvature types, f forward angles 5 deg, 10 deg, 15 deg, 20 deg, 30 deg, and 45 deg and backward angles −5 deg, −10 deg, and −15 deg, are investigated. Furthermore, three curvature positions of r/R = 0.8, 0.9, and 0.95 are studied. The numerical simulations are performed on rotors of radius 0.5 m at different wind speeds. The results are compared with straight rotor of linear profiles of chord and twist, which is considered as base rotor. It is found that the rotor with forward curvature of 5 deg and r/R = 0.9 has the highest power coefficient compared with the other rotors. At the peak performance, the proposed rotor reduces the axial thrust by about 12.5% compared with the base rotor. The flow behavior represented by the streamlines contours is also discussed. In such case, the separation approximately disappeared for the tip speed ratios of 5 and 6, which is responsible for the performance peak.


2021 ◽  
Vol 40 ◽  
pp. 83-98
Author(s):  
Peter Anuoluwapo Gbadega ◽  
Akshay Kumar Saha

Wind power has many benefits over other energy sources, including a high power density and an outstanding return on investment. However, there are some drawbacks, such as intermittent output power and the need for periodic maintenance. As a result, its output is substantially variable, making it difficult to predict and potentially causing system instability. Therefore, to model such a source, it is necessary to model the dynamic behavior of the wind turbine generator as well as the characteristics of the wind speed to capture the fluctuations. Furthermore, the durability and efficiency of the wind energy conversion system (WECS) are wholly dependent on the quality of the control strategy employed. In this paper, we introduced a control scheme, which makes it possible to find an optimal solution to the control problem while at the same time operating within the constraint point. Therefore, we designed the Model Predictive Controller to control and smoothly transition the wind turbine in all its operating modes while complying with its constraints. The main objective of using this control technique is to maximize power production while keeping the control action as simple as possible. The WECS used in this study is the horizontal axis wind turbines (HAWT), which are easier to control as their dynamics are not so complicated to model and, at the same time, produce maximum output power. The controller works have to adapt in the same way as the control goals are different for different wind speeds. Gain and weight scheduling strategies are used to design a control system that allows smooth transitioning between control regions. The dynamics of the wind turbine system and the controller are designed and simulated by the MATLAB / Simulink environment.


Sign in / Sign up

Export Citation Format

Share Document