Thermal and Thermoelectric Measurements of Low Dimensional Nanostructures

Author(s):  
Choongho Yu ◽  
Wanyoung Jang ◽  
Tobias Hanrath ◽  
Dohyung Kim ◽  
Zhen Yao ◽  
...  

Low dimensional materials have unique thermal and thermoelectric properties that can be very different from their bulk counterparts. In a previous work, we and our collaborators have developed a microdevice for measuring thermal and thermoelectric properties of multiwall carbon nanotubes. Here, we used an improved design of the device for measuring single wall carbon nanotubes, Ge nanowires, and SnO2 nanobelts. These nanostructures are trapped between two adjacent symmetric silicon nitride membranes of the micro device using either a wet deposition method or in-situ chemical vapor deposition. The measurements provide the critically needed data of the unique thermophysical properties of these nanomaterials.

NANO ◽  
2006 ◽  
Vol 01 (03) ◽  
pp. 207-212 ◽  
Author(s):  
PALANISAMY RAMESH ◽  
KENICHI SATO ◽  
YUJI OZEKI ◽  
MASAHITO YOSHIKAWA ◽  
NAOKI KISHI ◽  
...  

Carbon nanotubes with 1–6 walls have been grown on cobalt-loaded mesoporous silica (i.e., MCM41) by using acetylene catalytic chemical vapor deposition. It is found that titanium grafting on the MCM41 pore walls prior to cobalt loading promotes the growth of nanotubes with 1–6 walls. As-grown nanotube material is found to be a mixture of single-wall carbon nanotubes (SWNTs), double-wall carbon nanotubes (DWNTs) and thin-multiwall carbon nanotubes (t-MWNTs) with 3–6 walls. Annealing of the as-grown nanotubes has reduced the amount of SWNTs in the nanotube mixture. Several structural deformations of the t-MWNTs are observed during transmission electron microscopy (TEM) analysis. Complete or partial collapse of the t-MWNTs is also found due to these structural deformations. Graphite-like domains developed at the collapsed regions stabilize these structural deformations.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ji Hyun Lee ◽  
Kang Ho Ahn ◽  
Sun Man Kim ◽  
Ellen Kim ◽  
Gun Ho Lee ◽  
...  

Continuous monitoring for possible exposure to carbon nanotubes was conducted over a period of 2 to 3 days at workplaces that manufacture multiwall carbon nanotubes (MWCNTs) and single wall carbon nanotubes (SWCNTs). To estimate the potential emission of carbon nanotubes (CNTs) and potential exposure of workers, personal sampling, area monitoring, and real-time monitoring using an scanning mobility particle sizer (SMPS) and dust monitor were conducted at workplaces where the workers manufactured CNTs. The personal and area sampling of the total suspended particulate (TSP) at the MWCNT manufacturing facilities ranged from 0.031 to 0.254 and from N.D (not detected) to 0.253 mg/m3, respectively. This 2- to 3-day monitoring study found that nanoparticles were released when opening the chemical vapor deposit (CVD) reactor door after the synthesis of MWCNTs, when transferring the MWCNTs to containers and during blending and grinding. However, distinguishing the background concentration from the work process particle emission was complicated due to sustained and even increased particle concentrations after the work processes were terminated. The MWCNTs sampled for transmission electron microscopy (TEM) observation exhibited a tangled shape with no individual dispersed CNT structures.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 533 ◽  
Author(s):  
Josué A. Torres-Ávalos ◽  
Leonardo R. Cajero-Zul ◽  
Milton Vázquez-Lepe ◽  
Fernando A. López-Dellamary ◽  
Antonio Martínez-Richa ◽  
...  

Design of a smart drug delivery system is a topic of current interest. Under this perspective, polymer nanocomposites (PNs) of butyl acrylate (BA), methacrylic acid (MAA), and functionalized carbon nanotubes (CNTsf) were synthesized by in situ emulsion polymerization (IEP). Carbon nanotubes were synthesized by chemical vapor deposition (CVD) and purified with steam. Purified CNTs were analyzed by FE-SEM and HR-TEM. CNTsf contain acyl chloride groups attached to their surface. Purified and functionalized CNTs were studied by FT-IR and Raman spectroscopies. The synthesized nanocomposites were studied by XPS, 13C-NMR, and DSC. Anhydride groups link CNTsf to MAA–BA polymeric chains. The potentiality of the prepared nanocomposites, and of their pure polymer matrices to deliver hydrocortisone, was evaluated in vitro by UV–VIS spectroscopy. The relationship between the chemical structure of the synthesized nanocomposites, or their pure polymeric matrices, and their ability to release hydrocortisone was studied by FT-IR spectroscopy. The hydrocortisone release profile of some of the studied nanocomposites is driven by a change in the inter-associated to self-associated hydrogen bonds balance. The CNTsf used to prepare the studied nanocomposites act as hydrocortisone reservoirs.


NANO ◽  
2012 ◽  
Vol 07 (06) ◽  
pp. 1250045 ◽  
Author(s):  
YUN SUN ◽  
RYO KITAURA ◽  
TAKUYA NAKAYAMA ◽  
YASUMITSU MIYATA ◽  
HISANORI SHINOHARA

The influences of synthesis parameters on the mean diameter and diameter distribution of as-grown single-wall carbon nanotubes (SWCNTs) with chemical vapor deposition (CVD) using the mist flow method have been investigated in detail with Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We found that CVD reaction temperature and flow rate play an essential role in controlling the mean diameter and the quality of as-grown SWCNTs. Furthermore, we found that the carbon supply kinetics can be a dominant factor to determine the diameter of as-grown SWCNTs in the present mist flow method. Under a different combination of various parameters, the mean diameter of SWCNTs can be varied from 0.9 nm to 1.5 nm controllably.


2017 ◽  
Vol 5 (16) ◽  
pp. 4068-4074 ◽  
Author(s):  
Xinliang Li ◽  
Xiaowei Yin ◽  
Meikang Han ◽  
Changqing Song ◽  
Hailong Xu ◽  
...  

Ti3C2TxMXenes modified within situgrown carbon nanotubes (CNTs) are fabricatedviaa simple catalytic chemical vapor deposition (CVD) process.


2008 ◽  
Vol 1142 ◽  
Author(s):  
Hideto Yoshida ◽  
Seiji Takeda ◽  
Tetsuya Uchiyama ◽  
Hideo Kohno ◽  
Yoshikazu Homma

ABSTRACTNucleation and growth processes of carbon nanotubes (CNTs) in iron catalyzed chemical vapor deposition (CVD) have been observed by means of in-situ environmental transmission electron microscopy. Our atomic scale observations demonstrate that solid state iron carbide (Fe3C) nanoparticles act as catalyst for the CVD growth of CNTs. Iron carbide nanoparticles are structurally fluctuated in CVD condition. Growth of CNTs can be simply explained by bulk diffusion of carbon atoms since nanoparticles are carbide.


Nano Letters ◽  
2012 ◽  
Vol 12 (8) ◽  
pp. 4110-4116 ◽  
Author(s):  
P. T. Araujo ◽  
N. M. Barbosa Neto ◽  
H. Chacham ◽  
S. S. Carara ◽  
J. S. Soares ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document