An Experimental Investigation for Studying the Effect of Heating Element Shape During Pool Boiling

2003 ◽  
Author(s):  
Ahmed ElGafy ◽  
Khalid Lafdi

An experimental study is performed to investigate and predict the influence of the heating element shape on nucleate pool boiling heat transfer from vertical cylindrical heating elements. An experimental apparatus test is designed and fabricated for this purpose, while water is utilized as the working fluid. Five vertical cylindrical heating elements with different shapes are used. The average heat transfer coefficient is calculated for each case and a shape factor, which includes the heating element geometry, is introduced for each heating element. An empirical correlation is obtained to relate the mean heat transfer coefficient with the heat flux and shape factor. Another correlation is obtained to relate the mean heat transfer coefficient with the saturation temperature difference and the shape factor. A comparative study is performed between the enhancement ratio and both the area ratio and shape factor ratio.

Author(s):  
Hang Jin Jo ◽  
Hyungmo Kim ◽  
Ho Seon Ahn ◽  
Seontae Kim ◽  
Soon Ho Kang ◽  
...  

Many pool boiling experiments to enhance the nucleate boiling condition have been conducted and could get brilliant and challengeable results. A consensus was that CHF and heat transfer were affected by a modified heating surface. One of the efforts was the nanofluids experiments, and they have exhibited an incredible enhancement of CHF when nanofluids have been used as a working fluid in pool boiling. The results also have showed clearly that such large CHF enhancement came from the deposition of nanoparticles on the heating surface changing the surface condition. The surface covered by oxidized metal nanoparticles has a high wettability, and so it affects CHF. The fact that the wettability effect is significant to the enhancement of CHF is also supported by other kinds of boiling experiments. In addition, many researchers reported that wettability enhances not only CHF but also nucleate boiling heat transfer coefficient. In this regard, the excellent boiling performance (a high CHF and a high heat transfer coefficient) in pool boiling could be achieved through some favorable surface modification which satisfies the optimized wettability condition. For finding the optimized condition, we design the special heaters to examine how two materials, which have different wettabilities, affect the boiling phenomena. The special heaters have hydrophobic dots on the silicon surface. The hydrophobic dots lead to an early bubble inception. The bubble interface is bounded on the material boundary. The peculiar teflon(AF1600) is used as the hydrophobic material. The contact angle of the heating surface which is made by teflon is 120° to water at the room temperature. The contact angle of the silicon surface is 60° at the room temperature. The experiments using the micro hydrophobic dots and milli hydrophobic dot are performed, and the results are compared with the reference surface.


Author(s):  
Zhen Cao ◽  
Calle Preger ◽  
Zan Wu ◽  
Sahar Abbood ◽  
Maria E. Messing ◽  
...  

Saturated pool boiling heat transfer is investigated experimentally on a copper substrate with copper nanoparticle coatings at atmospheric pressure, in terms of critical heat flux (CHF) and heat transfer coefficient (HTC). Experiments are carried out on the substrate surface with a diameter of 12 mm using DI water as the working fluid. The coating is formed by stacking copper nanoparticles generated by an aerosol method. The aerosol nanoparticles are generated by a spark discharge generator with nitrogen gas as carrier gas and size-selected prior to electrostatic deposition. The thickness of the coating is quantified by the deposition time. In the present study, copper particles with diameter 35± 5 nm are selected, considering better coverage on the surface, while the deposition time is controlled as 4h and 8h, respectively. The boiling curves and heat transfer coefficient of MS-1 (4h deposition) and MS-2 (8h deposition) were compared with the BS (bare surface). The results show that CHFs of MS-1 and MS-2 are increased by 24% and 36%, respectively compared with the BS, while heat transfer is enhanced as well. High speed visualization tells that the coating provides more active nucleate sites and the hydrophobicity of the coating helps bubbles departure from the surface at low and moderate heat flux. At high heat flux, a hollow well occurs on MSs to supply liquid effectively to avoid dryout. Therefore, CHF and heat transfer are both improved.


Author(s):  
Hongbin He ◽  
Biao Shen ◽  
Sumitomo Hidaka ◽  
Koji Takahashi ◽  
Yasuyuki Takata

Heat transfer characteristic of a closed two-phase thermosyphon with enhanced boiling surface is studied and compared with that of a copper mirror surface. Two-phase cooling improves heat transfer coefficient (HTC) a lot compared to single-phase liquid cooling. The evaporator surfaces, coated with a pattern of hydrophobic circle spots (non-electroplating Ni-PTFE, 0.5∼2 mm in diameter and 1.5–3 mm in pitch) on Cu substrates, achieve very high heat transfer coefficient and lower the incipience temperature overshoot using water as the working fluid. Sub-atmospheric boiling on the hydrophobic spot-coated surface shows a much better heat transfer performance. Tests with heat loads (30 W to 260 W) reveals the coated surfaces enhance nucleate boiling performance by increasing the bubbles nucleation sites density. Hydrophobic circle spots coated surface with diameter 1 mm, pitch 1.5 mm achieves the maximal heat transfer enhancement with the minimum boiling thermal resistance as low as 0.03 K/W. The comparison of three evaporator surfaces with same spot parameters but different coating materials is carried out experimentally. Ni-PTFE coated surface with immersion method performs the optimal performance of the thermosyphon.


Author(s):  
Lorenzo Cremaschi

Driven by higher energy efficiency targets and industrial needs of process intensification and miniaturization, nanofluids have been proposed in energy conversion, power generation, chemical, electronic cooling, biological, and environmental systems. In space conditioning and in cooling systems for high power density electronics, vapor compression cycles provide cooling. The working fluid is a refrigerant and oil mixture. A small amount of lubricating oil is needed to lubricate and to seal the sliding parts of the compressors. In heat exchangers the oil in excess penalizes the heat transfer and increases the flow losses: both effects are highly undesired but yet unavoidable. This paper studies the heat transfer characteristics of nanorefrigerants, a new class of nanofluids defined as refrigerant and lubricant mixtures in which nano-size particles are dispersed in the high-viscosity liquid phase. The heat transfer coefficient is strongly governed by the viscous film excess layer that resides at the wall surface. In the state-of-the-art knowledge, while nanoparticles in the refrigerant and lubricant mixtures were recently experimentally studied and yielded convective in-tube flow boiling heat transfer enhancements by as much as 101%, the interactions of nanoparticles with the mixture still pose several open questions. The model developed in this work suggested that the nanoparticles in this excess layer generate a micro-convective mass flux transverse to the flow direction that augments the thermal energy transport within the oil film in addition to the macroscopic heat conduction and fluid convection effects. The nanoparticles motion in the shearing-induced and non-uniform shear rate field is added to the motion of the nanoparticles due to their own Brownian diffusion. The augmentation of the liquid phase thermal conductivity was predicted by the developed model but alone it did not fully explain the intensification on the two-phase flow boiling heat transfer coefficient reported in previous work in the literature. Thus, additional nano- and micro-scale heat transfer intensification mechanisms were proposed.


1998 ◽  
Vol 120 (2) ◽  
pp. 380-387 ◽  
Author(s):  
S. G. Kandlikar

Experimental evidence available in the literature indicates that the pool boiling heat transfer with binary mixtures is lower than the respective mole- or mass-fraction-averaged value. Although a few investigators have presented analytical work to model this phenomenon, empirical methods and correlations are used extensively. In the present work, a theoretical analysis is presented to estimate the mixture effects on heat transfer. The ideal heat transfer coefficient used currently in the literature to represent the pool boiling heat transfer in the absence of mass diffusion effects is based on empirical considerations, and has no theoretical basis. In the present work, a new pseudo-single component heat transfer coefficient is introduced to account for the mixture property effects more accurately. The liquid composition and the interface temperature at the interface of a growing bubble are predicted analytically and their effect on the heat transfer is estimated. The present model is compared with the theoretical model of Calus and Leonidopoulos (1974), and two empirical models, Calus and Rice (1972) and Fujita et al. (1996). The present model is able to predict the heat transfer coefficients and their trends in azeotrope forming mixtures (benzene/methanol, R-23/R-13 and R-22/R-12) as well as mixtures with widely varying boiling points (water/ethylene glycol and methanol/water).


2017 ◽  
Vol 29 (1) ◽  
pp. 44-48
Author(s):  
KM Tanvir Ahmmed ◽  
Sultana Razia Syeda

In this study saturated nucleate pool boiling of water with sodium oleate surfactant on a horizontal cylindrical heater surface has been investigated experimentally and compared with that of demineralized water. The concentration of sodium oleate in water was 100-300 ppm. The experimental results show that a small amount of surfactant enhances the heat transfer coefficient significantly. At low surfactant concentrations, heat transfer coefficient increases with increasing surfactant concentration in water. The maximum heat transfer enhancement is found to be at 250 ppm of sodium oleate solution. By adding more surfactant to water, heat transfer coefficient is found to be lowered. Surface tension of different concentration of sodium oleate solutions is measured. It is observed that the maximum heat transfer coefficient is obtained at a surfactant concentration that corresponds to the critical micelle concentration (cmc) of the sodium oleate solution.Journal of Chemical Engineering, Vol. 29, No. 1, 2017: 44-48


Author(s):  
Ayman Megahed ◽  
Ibrahim Hassan ◽  
Tariq Ahmad

The present study focuses on the experimental investigation of boiling heat transfer characteristics and pressure drop in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 295 μm, width of 254 μm, and a length of 16 mm. Un-encapsulated Thermochromic liquid Crystals (TLC) are used in the present work to enable nonintrusive and high spatial resolution temperature measurements. This measuring technique is used to provide accurate full and local surface-temperature and heat transfer coefficient measurements. Experiments are carried out for mass velocities ranging between 290 to 457 kg/m2.s and heat fluxes from 6.04 to 13.06 W/cm2 using FC-72 as the working fluid. Experimental results show that the pressure drop increases as the exit quality and the flow rate increase. High values of heat transfer coefficient can be obtained at low exit quality (xe < 0.2). However, the heat transfer coefficient decreases sharply and remains almost constant as the quality increases for an exit quality higher than 0.2.


Sign in / Sign up

Export Citation Format

Share Document