Effects of a High Porous Material on Heat Transfer and Flow in a Circular Tube

Author(s):  
Koichi Ichimiya ◽  
Tetsuaki Takeda ◽  
Takuya Uemura ◽  
Tetsuya Norikuni

This paper describes the heat transfer and flow characteristics of a heat exchanger tube filled with a high porous material. Fine copper wire (diamete: 0.5 mm) was inserted in a circular tube dominated by thermal conduction and forced convection. The porosity was from 0.98 to 1.0. Working fluid was air. Hydraulic equivalent diameter was cited as the characteristic length in Nusselt number and Reynolds number. Nusselt number and friction factor were expressed as functions of Reynolds number and porosity. Thermal performance was evaluated by the ratio of Nusselt number with and without a high porous material and the entropy generation. It was recognized that the high porous material was effective in low Reynolds number and the Reynolds number which minimized the entropy generation existed.

2008 ◽  
Vol 131 (2) ◽  
Author(s):  
Koichi Ichimiya ◽  
Tetsuaki Takeda ◽  
Takuya Uemura ◽  
Tetsuya Norikuni

This paper describes the heat transfer and flow characteristics of a heat exchanger tube filled with a high porous material. Fine copper wires (diameter: 0.5 mm) were inserted in a circular tube dominated by thermal conduction and forced convection. The porosity was from 0.98 to 1.0. The working fluid was air. The hydraulic equivalent diameter was cited as the characteristic length in the Nusselt number and the Reynolds number. The Nusselt number and the friction factor were expressed as functions of the Reynolds number and porosity. The thermal performance was evaluated by the ratio of the Nusselt number with and without a high porous material and the entropy generation. It was recognized that the high porous material was effective in low Reynolds numbers and the Reynolds number, which minimized the entropy generation existed.


Author(s):  
Shaokun Xu ◽  
Baoming Chen ◽  
Shui Ji ◽  
Shiqi Zhao

The experimental study of heat transfer and flow characteristics are conducted for water and ethylene-glycol solution flowing in the heat exchanger with rectangular or triangular microscale channels, which have equivalent diameter of 0.55mm, 0.91mm, 1.38mm and 5mm. During experiments, the Reynolds number ranges from 300 to 2500. The experimental results show that: at a fixed Reynolds number, the Nusselt number increases along with increasing equivalent diameter, the Nusselt number for ethylene-glycol solution with larger Prandtl number is greater than that for water, the geometrical configuration of the microscale channels have a significant effect on the heat transfer; the flow friction factors of microscale channels are smaller than that of normal channels, flow characteristics of rectangular channels are evidently better than that of triangular, the flow friction factor decreases with increasing Reynolds number, the experiment also show that the flow friction factor is independent of Prandtl number; The critical Reynolds number at which the flow transiting to turbulent flow is 700∼1200.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Recep Ekiciler ◽  
Muhammet Samet Ali Çetinkaya ◽  
Kamil Arslan

In this study, air jet impingement on flat, triangular-corrugated, and sinusoidal-corrugated surfaces was numerically investigated. Bottom surface was subjected to constant surface temperature. Air was the working fluid. The air exited from a rectangular shaped slot and impinged on the bottom surface. The Reynolds number was changed between 125 and 500. The continuity, momentum, and energy equations were solved using the finite volume method. The effect of the shape of bottom surface on heat and flow characteristics was investigated in detail. Average and local Nusselt number were calculated for each case. It was found out that Nusselt number increases by increasing the Reynolds number. The optimum conditions were established to get much more enhancement in terms of performance evaluation criterion (PEC). It was revealed that the shape of the cooling surface (bottom wall) influences the heat transfer substantially.


2014 ◽  
Vol 348 ◽  
pp. 162-170
Author(s):  
Pey Shey Wu ◽  
Yi Hung Lin ◽  
Yue Hua Jhuo ◽  
Hsiao Ying Chan

Impingement heat transfer between a circular jet and a semi-spherical concave surface with or without coverage of porous material is investigated experimentally and numerically. For cases with coverage of the porous material on the target plate, a trapping hole for the jet fluid is fabricated. Measured local Nusselt number distributions along a meridian are documented. The flow and temperature fields at the conditions similar to that of experiments were computed with CFD software to support the experimental results and help to explain the physics. Varying parameters include Reynolds number, nozzle-to-plate distance, relative curvature, and a target surface with or without the covered porous material. Results show that the attachment of a porous material increases Nusselt number, with more influence at the stagnation zone than the far field. Increasing Reynolds number usually increases Nusselt number unless it is too high. Although an increase in the nozzle-to-plate distance decreases stagnation Nusselt number, the influence in heat transfer is small in the far field. The trapping-hole diameter should be the same as that of the jet diameter for best heat transfer enhancement.


Author(s):  
Naga Sarada Somanchi ◽  
Sri Rama Devi Rangisetty ◽  
Sudheer PremKumar Bellam ◽  
Ravi Gugulothu ◽  
Samuel Bellam

The present work deals with the results of the experimental investigations carried out on augmentation of turbulent flow heat transfer in a horizontal circular tube by means of tube inserts, with air as working fluid. Experiments were carried out initially for the plain tube (without tube inserts). The Nusselt number and friction factor obtained experimentally were validated against those obtained from theoretical correlations. Secondly experimental investigations using six kinds of tube inserts namely Rectangular bar with diverging conical strips, Rectangular bar with converging conical strips, Rectangular bar with alternate converging diverging conical strips, Rectangular bar with holes and diverging conical strips, Rectangular bar with holes and converging conical strips and Rectangular bar with holes and alternate converging diverging conical strips were carried out to estimate the enhancement of heat transfer rate for air in the presence of inserts. The Reynolds number ranged from 8000 to 19000. In the presence of inserts, Nusselt number and pressure drop increased, overall enhancement ratio is calculated to determine the optimum geometry of the tube insert. Based on experimental investigations, it is observed that, the enhancement of heat transfer using Rectangular bar with diverging conical strips is more effective compared to other inserts.


Author(s):  
Guolong Li ◽  
Jin Wang ◽  
Hongxing Zheng ◽  
Gongnan Xie ◽  
Bengt Sundén

AbstractIn this paper, convective heat transfer of Fe3O4–carbon nanotubes (CNTs) hybrid nanofluid was studied in a horizontal small circular tube under influence of annular magnets. The pipe has an inner diameter of 3 mm and a length of 1.2 m. Heat transfer characteristics of the Fe3O4–water nanofluid were examined for many parameters, such as nanoparticle volume fraction in the range of 0.4–1.2% and Reynolds number in the range of 476–996. In order to increase the thermal conductivity of the Fe3O4–water nanofluid, carbon nanotubes with 0.12–0.48% volume fraction were added into the nanofluid. It was observed that for the Fe3O4–CNTs–water nanofluid with 1.44% volume fraction and under a magnetic field, the maximal local Nusselt number at the Reynolds number 996 increased by 61.54% compared with without a magnetic field. Results also show that compared with the deionized water, the maximal enhancements of the average Nusselt number are 67.9 and 20.89% for the Fe3O4–CNTs–water nanofluid with and without magnetic field, respectively.


1966 ◽  
Vol 88 (1) ◽  
pp. 131-136 ◽  
Author(s):  
K. M. Krall ◽  
E. M. Sparrow

Experiments were performed to determine the effect of flow separation on the heat-transfer characteristics of a turbulent pipe flow. The flow separation was induced by an orifice situated at the inlet of an electrically heated circular tube. The degree of flow separation was varied by employing orifices of various bore diameters. Water was the working fluid. The Reynolds number and the Prandtl number, respectively, ranged from 10,000 to 130,000 and from 3 to 6. The measurements show that the local heat-transfer coefficients in the separated, reattached, and redevelopment regions are several times as large as those for a fully developed flow. For instance, at the point of reattachment, the coefficients were 3 to 9 times greater than the corresponding fully developed values. In general, the increase of the heat-transfer coefficient owing to flow separation is accentuated as the Reynolds number decreases. The point of flow reattachment, which corresponds to a maximum in the distribution of the heat-transfer coefficient, was found to occur from 1.25 to 2.5 pipe dia from the onset of separation.


An experimental investigation has been carried out for heat transfer enhancement over dimpled surface using spoiler turbulators. The experimentation is carried out over the aluminum plate of 1000 mm x 10 mm x 5 mm and Reynolds number ranging from 10,000 to 33,000. The δ/d ratio for dimple is 0.3, which is kept constant. The pitch for dimples are varied as 16 mm, 18 mm and 20 mm. Turbulators were used over the dimples surface in inline and staggered arrangement which provides different flow structure and produces turbulence. Turbulators are mounted over dimples at an angle of 12o with respect to flat plate. Experimental results were validated using Dittus-Boelter and Blasius equations. Analysis is made using Nusselt number, friction factor and performance index. It has been found that compared to dimpled plate performance of dimpled surface with spoiler tabulator plate is higher. If we compare inline and staggered arrangement, performance of inline arrangement dimple plate with turbulator is higher compared to staggered arrangement. This is due to in staggered arrangement at some locations chocking of flow may takes place which reduces heat transfer rate.


Sign in / Sign up

Export Citation Format

Share Document