Porous Media Thermal Modeling of an Electronic Chip With Non-Uniform Power Distribution and Cooled by Micro-Channels

Author(s):  
Yubai Li ◽  
Yu Zhang ◽  
Shi-Chune Yao

Micro-channels are used for the cooling of electronic chips. However, the 3D-CFD modeling of the large number of channels in a full chip requires huge number of meshes and computation time. Although porous media modeling of micro-channels can significantly reduce the effort of simulation, most porous media models are based upon the assumption that the surface heat flux or temperature is uniform on the chip. In reality, the heat flux on the chip is usually highly non-uniform. As a result, the heat transfer coefficient along the micro-channel is not uniform. In the present study, the porous media model considers the simultaneously developing entrance effect at the micro-channel inlet, and the thermally developing entrance effect due to the severe heat flux variation along the channel. Duhamel integral is used to determine the heat transfer coefficient variation corresponding to the heat flux distribution along the channels, and comparisons are made with the rigorous conjugate conduction-convection modeling. The computing cost of this modeling method is only about 1% (including one time of iteration) of 3D-CFD simulation. To demonstrate this approach, a full scale electronic chip with realistic power distribution on the surface is modeled, and the temperature map on the chip’s heating surface is provided.

Author(s):  
Brandon Hulet ◽  
Andres Martinez ◽  
Melanie Derby ◽  
Amy Rachel Betz

This research experimentally investigates the heat transfer performance of open-micro channels under filmwise condensation conditions. Filmwise condensation is an important factor in the design of steam condensers used in thermoelectric power generation, desalination, and other industrial applications. Filmwise condensation averages five times lower heat transfer coefficients than those present in dropwise condensation, and filmwise condensation is the dominant condensation regime in the steam condensers due to a lack of a durable dropwise condensation surface. Film thickness is also of concern because it is directly proportional to the condenser’s overall thermal resistance. This research focuses on optimizing the channel size to inhibit the creation of a water film and/or to reduce its overall thickness in order to maximize the heat transfer coefficient of the surface. Condensation heat transfer was measured in three square channels and a plane surface as a control. The sizes of the square fins were 0.25 mm; 0.5 mm; and 1 mm, and tests were done at a constant pressure of 6.2 kPa. At lower heat fluxes, the 0.25mm fins perform better, whereas at larger heat fluxes a smooth surface offers better performance. At lower heat fluxes, droplets are swept away by gravity before the channels are flooded. Whereas, at higher heat fluxes, the channels are flooded increasing the total film thickness, thereby reducing the heat transfer coefficient.


Author(s):  
AS Sabu ◽  
Joby Mackolil ◽  
B Mahanthesh ◽  
Alphonsa Mathew

The study focuses on the aggregation kinematics in the quadratic convective magneto-hydrodynamics of ethylene glycol-titania ([Formula: see text]) nanofluid flowing through an inclined flat plate. The modified Krieger-Dougherty and Maxwell-Bruggeman models are used for the effective viscosity and thermal conductivity to account for the aggregation aspect. The effects of an exponential space-dependent heat source and thermal radiation are incorporated. The impact of pertinent parameters on the heat transfer coefficient is explored by using the Response Surface Methodology and Sensitivity Analysis. The effects of several parameters on the skin friction and heat transfer coefficient at the plate are displayed via surface graphs. The velocity and thermal profiles are compared for two physical scenarios: flow over a vertical plate and flow over an inclined plate. The nonlinear problem is solved using the Runge–Kutta-based shooting technique. It was found that the velocity profile significantly decreased as the inclination of the plate increased on the other hand the temperature profile improved. The heat transfer coefficient decreased due to the increase in the Hartmann number. The exponential heat source has a decreasing effect on the heat flux and the angle of inclination is more sensitive to the heat transfer coefficient than other variables. Further, when radiation is incremented, the sensitivity of the heat flux toward the inclination angle augments at the rate 0.5094% and the sensitivity toward the exponential heat source augments at the rate 0.0925%. In addition, 41.1388% decrement in wall shear stress is observed when the plate inclination is incremented from [Formula: see text] to [Formula: see text].


Author(s):  
Akira Matsui ◽  
Kazuhisa Yuki ◽  
Hidetoshi Hashizume

Detailed heat transfer characteristics of particle-sintered porous media and metal foams are evaluated to specify the important structural parameters suitable for high heat removal. The porous media used in this experiment are particle-sintered porous media made of bronze and SUS316L, and metal foams made of copper and nickel. Cooling water flows into the porous medium opposite to heat flux input loaded by a plasma arcjet. The result indicates that the bronze-particle porous medium of 100μm in pore size shows the highest performance and achieves heat transfer coefficient of 0.035MW/m2K at inlet heat flux 4.6MW/m2. Compared with the heat transfer performance of copper fiber-sintered porous media, the bronze particlesintered ones give lower heat transfer coefficient. However, the stable cooling conditions that the heat transfer coefficient does not depend on the flow velocity, were confirmed even at heat flux of 4.6MW/m2 in case of the bronze particle-sintered media, while not in the case of the copper-fiber sintered media. This signifies the possibility that the bronze-particle sintered media enable much higher heat flux removal of over 10MW/m2, which could be caused by higher permeability of the particle-sintered pore structures. Porous media with high permeability provide high performance of vapor evacuation, which leads to more stable heat removal even under extremely high heat flux. On the other hand, the heat transfer coefficient of the metal foams becomes lower because of the lower capillary and fin effects caused by too high porosity and low effective thermal conductivity. It is concluded that the pore structure having high performance of vapor evacuation as well as the high capillary and high fin effects is appropriate for extremely high heat flux removal of over 10MW/m2.


2020 ◽  
Vol 10 (4) ◽  
pp. 1255
Author(s):  
Liping Zeng ◽  
Xing Liu ◽  
Quan Zhang ◽  
Jun Yi ◽  
Xiaohua Li ◽  
...  

This paper mainly studies the heat transfer performance of backplane micro-channel heat pipes by establishing a steady-state numerical model. Compared with the experimental data, the heat transfer characteristics under different structure parameters and operating parameters were studied, and the change of heat transfer coefficient inside the system, the air outlet temperature of the back plate and the influence of different environmental factors on the heat transfer performance of the system were analyzed. The results show that the overall error between simulation results and experimental data is less than 10%. In the range of the optimal filling rate (FR = 64.40%–73.60%), the outlet temperature at the lowest point and the highest point of the evaporation section is 22.46 °C and 19.60 °C, the temperature difference does not exceed 3 °C, and the distribution gradient in vertical height is small and the air outlet temperature is uniform. The heat transfer coefficient between the evaporator and the condenser is larger than the heat transfer coefficient under the conditions of low and high liquid charge rate. It increases gradually along the flow direction, and decreases gradually with the flow rate of the condenser. When the width of the flat tube of the evaporator increases from 20 mm to 28 mm, the internal pressure drop of the evaporator decreases by 45.83% and the heat exchange increases by 18.34%. When the number of evaporator slices increases from 16 to 24, the heat transfer increases first and then decreases, with an overall decrease of 2.86% and an increase of 87.67% in the internal pressure drop of the evaporator. The inclination angle of the corrugation changes from 30° to 60°, and the heat transfer capacity and pressure drop increase. After the inclination angle is greater than 60°, the heat transfer capacity and resistance decrease. The results are of great significance to system optimization design and engineering practical application.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Peter Schreivogel ◽  
Michael Pfitzner

A new approach for steady-state heat transfer measurements is proposed. Temperature distributions are measured at the surface and a defined depth inside the wall to provide boundary conditions for a three-dimensional heat flux calculation. The practical application of the technique is demonstrated by employing a superposition method to measure heat transfer and film cooling effectiveness downstream of two different 0.75D deep narrow trench geometries and cylindrical holes. Compared to the cylindrical holes, both trench geometries lead to an augmentation of the heat transfer coefficient supposedly caused by the highly turbulent attached cooling film emanating from the trenches. Areas of high heat transfer are visible, where recirculation bubbles or large amounts of coolant are expected. Increasing the density ratio from 1.33 to 1.60 led to a slight reduction of the heat transfer coefficient and an increased cooling effectiveness. Both trenches provide a net heat flux reduction (NHFR) superior to that of cylindrical holes, especially at the highest momentum flux ratios.


Author(s):  
M. Hamayun Maqbool ◽  
Bjo¨rn Palm ◽  
R. Khodabandeh ◽  
Rashid Ali

Experiments have been performed to investigate heat transfer in a circular vertical mini channel made of stainless steel (AISI 316) with internal diameter of 1.70 mm and a uniformly heated length of 245 mm using ammonia as working fluid. The experiments are conducted for a heat flux range of 15 to 350 kW/m2 and mass flux range of 100 to 500 kg/m2s. The effects of heat flux, mass flux and vapour quality on the heat transfer coefficient are explored in detail. The experimental results show that the heat transfer coefficient increases with imposed wall heat flux while mass flux and vapour quality have no considerable effect. Experimental results are compared to predictive methods available in the literature for boiling heat transfer. The correlations of Cooper et al. [1] and Shah [3] are in good agreement with our experimental data.


1969 ◽  
Vol 91 (1) ◽  
pp. 27-36 ◽  
Author(s):  
B. S. Shiralkar ◽  
Peter Griffith

At slightly supercritical pressure and in the neighborhood of the pseudocritical temperature (which corresponds to the peak in the specific heat at the operating pressure), the heat transfer coefficient between fluid and tube wall is strongly dependent on the heat flux. For large heat fluxes, a marked deterioration takes place in the heat transfer coefficient in the region where the bulk temperature is below the pseudocritical temperature and the wall temperature above the pseudocritical temperature. Equations have been developed to predict the deterioration in heat transfer at high heat fluxes and the results compared with previously available results for steam. Experiments have been performed with carbon dioxide for additional comparison. Limits of safe operation for a supercritical pressure heat exchanger in terms of the allowable heat flux for a particular flow rate have been determined theoretically and experimentally.


2012 ◽  
Vol 188 ◽  
pp. 264-269
Author(s):  
Li Xin Qu ◽  
Yi Hong Zhou ◽  
Yao Ying Huang ◽  
Guo Qing Tang ◽  
Shao Wu Zhou

Most of the cracks on concrete dam are external ones, while external heat preservation is an important measure to prevent cracking. In order to obtain the actual thermal parameters, according to thermal conduction theory and the temperature distribution conditions of optical fiber on concrete surface, the surface temperature distribution of concrete pouring deck was real-time monitored by setting optical fiber in different depths; then the surface heat flux of mass concrete was calculated, thereby the equivalent surface heat transfer coefficient, which varied as time goes, was inversed. It is indicated that the inversion process is relatively simple and reliable, and the heat transfer coefficient obtained can well reflect the real performance of the insulation materials. Meanwhile, it is also indicated that the heat transfer coefficient of equivalent surface varies as time goes, which can contribute to back analysis calculation and actual engineering practice.


Author(s):  
S. Baldauf ◽  
M. Scheurlen ◽  
A. Schulz ◽  
S. Wittig

Heat transfer coefficients and the resulting heat flux reduction due to film cooling on a flat plate downstream a row of cylindrical holes are investigated. Highly resolved two dimensional heat transfer coefficient distributions were measured by means of infrared thermography and carefully corrected for local internal testplate conduction and radiation effects [1]. These locally acquired data are processed to lateral average heat transfer coefficients for a quantitative assessment. A wide range variation of the flow parameters blowing rate and density ratio as well as the geometrical parameters streamwise ejection angle and hole spacing is examined. The effects of these dominating parameters on the heat transfer augmentation from film cooling are discussed and interpreted with the help of highly resolved surface results of effectiveness and heat transfer coefficients presented earlier [2]. A new method of evaluating the heat flux reduction from film cooling is presented. From a combination of the lateral average of both the adiabatic effectiveness and the heat transfer coefficient, the lateral average heat flux reduction is processed according to the new method. The discussion of the total effect of film cooling by means of the heat flux reduction reveals important characteristics and constraints of discrete hole ejection. The complete heat transfer data of all measurements are used as basis for a new correlation of lateral average heat transfer coefficients. This correlation combines the effects of all the dominating parameters. It yields a prediction of the heat transfer coefficient from the ejection position to far downstream, including effects of extreme blowing angles and hole spacing. The new correlation has a modular structure to allow for future inclusion of additional parameters. Together with the correlation of the adiabatic effectiveness it provides an immediate determination of the streamwise heat flux reduction distribution of cylindrical hole film cooling configurations.


2013 ◽  
Vol 17 (5) ◽  
pp. 1337-1342 ◽  
Author(s):  
Shu Zheng ◽  
Zixue Luo ◽  
Huaichun Zhou

In this paper, a distributed parameter model for the evaporation system of a supercritical spiral water wall boiler is developed based on a 3-D temperature field. The mathematical method is formulated for predicting the heat flux and the metal-surface temperature. The results show that the influence of the heat flux distribution is more obvious than that of the heat transfer coefficient distribution in the spiral water wall tube, and the peak of the heat transfer coefficient decreases with an increment of supercritical pressure. This distributed parameter model can be used for a 600 MW supercritical-pressure power plant.


Sign in / Sign up

Export Citation Format

Share Document