Emission and Combustion Characteristics of Biodiesel (Jatropha Curcas) Blends in a Medium Duty IDI Transportation Engine

Author(s):  
Harish Kumar Gangwar ◽  
Avinash Kumar Agarwal

Vegetable oils, due to their agricultural origin, are able to reduce net carbon-di-oxide emissions to the atmosphere along with import substitution of petroleum products. However, several operational and durability problems in using straight vegetable oils as CI engine fuels are reported in the literature, which are because of their higher viscosity and low volatility compared to mineral diesel. In the present research, experiment were designed to study the effect of lowering Jatropha oil’s viscosity by transesterification and thereby eliminating adverse effects on combustion characteristics of the engine. In the present experimental research, Jatropha methyl ester is produced by transesterification of jatropha oil using methanol in presence of basic catalyst (Sodium hydroxide). Experimental investigations have been carried out to examine the combustion characteristics of in an indirect injection (IDI) transportation diesel engine running with diesel, biodiesel and its blends with diesel. Engine tests were performed at different engine loads ranging from no load to rated (100%) load at fixed engine speed (2000 rpm). A careful analysis of cylinder pressure rise, instantaneous heat release and cumulative heat release was carried out. All test fuels exhibited similar combustion stages as diesel however biodiesel and its blends showed earlier start of combustion and lower heat release during premixed combustion phase at all engine load. Maximum cylinder pressure reduces as the fraction of biodiesel increases in the blend and at higher engine loads, the crank angle position of peak cylinder pressure for biodiesel blends shifted away from top dead center. The maximum rate of pressure rise was found to be higher for diesel at higher engine loads however total combustion duration was higher for biodiesel blends.

Author(s):  
S Sinha ◽  
A K Agarwal

Increased environmental awareness and depletion of fossil petroleum resources are driving industry to develop alternative fuels that are environmentally more acceptable. Transesterified vegetable oil derivatives called ‘biodiesel’ appear to be the most convenient way of utilizing bio-origin vegetable oils as substitute fuels in diesel engines. The methyl esters of vegetable oils do not require significant modification of existing engine hardware. Previous research has shown that biodiesel has comparable performance and lower brake specific fuel consumption than diesel with significant reduction in emissions of CO, hydrocarbons (HC), and smoke but slightly increased NO x emissions. In the present experimental research work, methyl ester of rice-bran oil is derived through transesterification of rice-bran oil using methanol in the presence of sodium hydroxide (NaOH) catalyst. Experimental investigations have been carried out to examine the combustion characteristics in a direct injection transportation diesel engine running with diesel, biodiesel (rice-bran oil methyl ester), and its blends with diesel. Engine tests were performed at different engine loads ranging from no load to rated (100 per cent) load at two different engine speeds (1400 and 1800 r/min). A careful analysis of the cylinder pressure rise, heat release, and other combustion parameters such as the cylinder peak combustion pressure, rate of pressure rise, crank angle at which peak pressure occurs, rate of pressure rise, and mass burning rates was carried out. All test fuels exhibited similar combustion stages as diesel; however, biodiesel blends showed an earlier start of combustion and lower heat release during premixed combustion phase at all engine load-speed combinations. The maximum cylinder pressure reduces as the fraction of biodiesel increases in the blend and, at higher engine loads, the crank angle position of the peak cylinder pressure for biodiesel blends shifted away from the top dead centre in comparison with baseline diesel data. The maximum rate of pressure rise was found to be higher for diesel at higher engine loads; however, combustion duration was higher for biodiesel blends.


Author(s):  
Shailendra Sinha ◽  
Avinash Kumar Agarwal

The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engines. They do not require significant modification in existing engine hardware. Methyl ester of rice bran oil (ROME) is prepared through the process of transesterification. Previous research has shown that ROME has comparable performance, lower bsfc in comparison to diesel. There was reduction in the emissions of CO, HC, and smoke but NOx emissions increased. In the present research, experimental investigations have been carried out to examine the combustion characteristics of a direct injection transportation diesel engine running with diesel, and 20% blend of ROME with diesel. A four-stroke, four-cylinder, direct-injection transportation diesel engine (MDI 3000) was fully instrumented for the measurement of combustion pressure, rate of pressure rise and other combustion parameters such as instantaneous heat release rate, cumulative heat release rate, mass fraction burned etc. Tests were performed at different loads ranging from no load to 100%, at constant engine speed. No engine hardware modification was carried out for the present study. A careful analysis of combustion and heat release parameters has been carried out, which gives precise information about the in-cylinder combustion of rice bran oil based biodiesel vis-a`-vis mineral diesel.


2019 ◽  
Vol 969 ◽  
pp. 451-460
Author(s):  
Manpreet Singh ◽  
Mohd Yunus Sheikh ◽  
Dharmendra Singh ◽  
P. Nageswara Rao

The rapid rise in energy requirement and problem regarding atmosphere pollutions, renewable biofuels are the better alternative choice for the internal combustion engine to partially or totally replace the pollutant petroleum fuel. In the present work, thumba (Citrullus colocynthis) non-edible vegetable oil is used for the production of biodiesel and examine its possibility as diesel engine fuel. Transesterification process is used to produce biodiesel from thumba non-edible vegetable oil. Thumba biodiesel (TBD) is used to prepare five different volume concentration (blends) with neat diesel (D100), such as TBD5, TBD15, TBD25, TBD35 and TBD45 to run a single cylinder diesel engine. The diesel engine's combustion parameter such as in-cylinder pressure, rate of pressure rise, net heat release rate, cumulative heat release, mean gas temperature, and mass fraction burnt analyzed through graphs and compared all thumba biodiesel blends result with neat diesel fuel. The mass fraction burnt start earlier for thumba biodiesel blends compared to diesel fuel because of less ignition delay while peak in-cylinder pressure, maximum rate of pressure rise, maximum net heat release rate, maximum cumulative heat release, and maximum mean gas temperature has found decreased results up to 1.93%, 5.53%, 4.11%, 4.65%, and 1.73% respectively for thumba biodiesel.


2015 ◽  
Vol 813-814 ◽  
pp. 824-829
Author(s):  
Ramani Vagesh Shangar ◽  
Venkatesan Hariram

In the current study, combustion characteristics were evaluated using mahua biodiesel blends at different compression ratios on a direct injection CI engine. Non edible mahua oil was transesterified into biodiesel by two stage technique. Combustion parameters were evaluated for B5, B10 and B20 blends of mahua biodiesel with diesel and they were compared with straight diesel at compression ratios of 16, 17 and 18.Compression ratio was varied without altering the combustion chamber geometry and the static spill timing was set to 23° bTDC. Parameters like In cylinder pressure, heat release rate, rate of pressure rise and cumulative heat release were evaluated in this study at 100% engine loading conditions. Higher peak cylinder pressure and heat release was observed at higher compression ratios. The ignition delay of the blends were slightly higher compared to diesel at all CR tested. Peak cylinder pressure of the blends was slightly higher at CR 18. The ignition delay was also observed to be lower at higher compression ratio. The peak pressure was observed closer to TDC at higher compression ratios for all fuels tested.


2011 ◽  
Vol 354-355 ◽  
pp. 462-467
Author(s):  
Cui Ping Zhang ◽  
Xu Mao Zhai ◽  
Yu Juan Li ◽  
Zhi Gang Sun

Methanol and diesel are almost not soluble, which greatly limits the further study and popularization of the methanol-diesel fuel. To study the emission and combustion characteristics, the 4100 turbocharged and intercooled diesel engine was fueled with 0# diesel and M10 with different additives in the experiment. The result shows that, the maximum cylinder pressure and the peak of the heat release rate in the initial stage of combustion for M10 with iso-octanol and isooctyl nitrate as additive are higher than that of diesel, while the soot emission is lower and NOx emission is slightly higher than diesel’. The maximum cylinder pressure and the heat-release peak in the initial stage of combustion for M10 with dimethyl ether as additive are both lower than diesel’, and the NOx and soot emissions are obviously decreased. The power of the two blend fuels is lower than that of diesel but the magnitude is small, meanwhile the HC emission is slightly increased, while the CO emission is little declined.


Author(s):  
Avinash Kumar Agarwal ◽  
Atul Dhar

The methyl esters of vegetable oils known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engines. Methyl ester of rice-bran oil (RBOME) is prepared through the process of transesterification. In the present investigation, experiments have been carried out to examine the performance, emission, and combustion characteristics of a direct-injection transportation diesel engine running with diesel, 20% blend of rice-bran oil (RBO), and 20% blend of RBOME with mineral diesel. A four-stroke, four-cylinder, direct-injection transportation diesel engine (MDI 3000) was instrumented for the measurement of the engine performance, emissions, in-cylinder pressure-crank angle history, rate of pressure rise, and other important combustion parameters such as instantaneous heat release rate, cumulative heat release rate, mass fraction burned, etc. A careful analysis of the performance, emissions, combustion, and heat release parameters has been carried out. HC, CO, and smoke emissions for RBO and RBOME blends were lower than mineral diesel while NOx emissions were almost similar and brake specific fuel consumption (BSFC) was slightly higher than mineral diesel. Combustion characteristics were quite similar for the three fuels.


Author(s):  
Qi Donghui ◽  
Zhou Longbao ◽  
Liu Shenghua

This paper studies the combustion characteristics and performances of a LPG/diesel blend-fuel engine; the influences of mixing ratio of LPG in diesel on the ignition timing, in-cylinder pressure, heat-release rate, specific fuel consumption, power output, and exhaust emissions have been identified. The results indicate that the ignition delay of blend fuel was obviously longer than that of diesel and the higher the mixing ratio of LPG in diesel, the longer the ignition delay. When the mixing ratio of LPG in diesel was 10 per cent, the peak in-cylinder gas pressure and the peak rate of pressure rise were slightly higher than those of diesel, and the corresponding crank angles at which the peak values occurred were almost the same as those of diesel. When the mixing ratio was 30 per cent, the peak in-cylinder pressure and the peak rate of pressure rise were lower than those of diesel, and the corresponding crank angles were retarded. With the increasing of mixing ratio of LPG in diesel, the peak rate of heat release increased and the corresponding crank angles were retarded. The equivalent specific fuel consumption of L10 was the same as that of diesel, but that of L30 was slight higher. The power output of the diesel engine was higher than those of L10 and L30 at speed characteristic of full load, especially at high engine speed. With the increasing of mixing ratio, the smoke emissions and NOx emissions were greatly reduced, and CO emissions decreased too, but HC emissions slightly increased.


2020 ◽  
Vol 10 (3) ◽  
pp. 907 ◽  
Author(s):  
Guillermo Valencia Ochoa ◽  
Carlos Acevedo Peñaloza ◽  
Jorge Duarte Forero

This study investigated the influence of different biodiesel blends produced from residual sunflower oil and palm oil from agroindustry liquid waste on the characteristics of the combustion process, performance, and emissions in a single-cylinder diesel engine. For the analysis of the combustion process, a diagnostic model was developed based on the cylinder pressure signal, which allows the calculation of the heat release rate, the accumulated heat rate, and the temperature in the combustion chamber. This is to assess the influence of these parameters on engine emissions. The experiments on the diesel engine were carried out using five types of fuel: conventional diesel, two biodiesel blends of residual palm oil (PB5 and PB10), and two biodiesel blends formed with palm oil and sunflower oil residues (PB5SB5 and PB10SB5). The engine was running in four different modes, which covered its entire operating area. Experimental results show that the in-cylinder pressure curves decrease as the percentage of biodiesel in the fuel increases. Similarly, the results showed a decrease in the heat release rate for biodiesel blends. The diagrams of the accumulated heat release curves were larger for fuels with higher biodiesel content. This effect is reflected in the thermal efficiency of biodiesel blends since the maximum thermal efficiencies were 29.4%, 30%, 30.6%, 31.2%, and 31.8% for PB10SB5, PB5SB5, PB10, PB5, and diesel, respectively. The emission analysis showed that the blends of biodiesel PB5SB5 and PB10SB allowed a greater reduction in the emissions of CO, CO2, HC, and opacity of smoke in all the modes of operation tested, in comparison with the blends of biodiesel PB5 and PB10. However, NOx emissions increased. In general, biodiesel with the percentage of residual sunflower oil does not cause a significant change in the combustion process and engine performance, when compared to biodiesel that includes only residual palm oil.


2015 ◽  
Vol 1092-1093 ◽  
pp. 508-511
Author(s):  
Jia Wang Zhou ◽  
Chun Hua Zhang ◽  
Gang Li ◽  
Ye Chun Shen

The combustion characteristics of an HCCI engine fueled with n-butanol were investigated on a modified two-cylinder, four stoke diesel engine. The experiments were conducted on the HCCI engine with λ of 2.0, 2.5 and 3.0, and the intake air temperature and engine speed were kept at 140 °C and 1000rpm, respectively. Effects of λ on combustion characteristics including in-cylinder pressure rise rate, heat release rate, CA05 and combustion duration of HCCI combustion engine are discussed in details based on the recorded in-cylinder pressure. The results indicate that in-cylinder pressure and the rate of pressure rise both decrease with the increase of λ, the maximum heat release rate also decreases with the increase of λ but occurs at late crank angles. In addition, as λ increases, the combustion phasing retards and combustion duration becomes longer.


2020 ◽  
Author(s):  
K. Vijayaraj ◽  
A. Muruga Ganesan ◽  
C.G. Saravanan

Oil based fuels worldwide have not just brought about the speedy consumption of available energy sources, yet have likewise caused extreme air pollution. The quests for a substitute fuel has prompted numerous findings because of which wide assortment of alternative fuels are available now. The current investigations have revealed the utilization of vegetable oils for engines as an option for diesel fuel. Since there is a restriction in using vegetable oils in diesel engines because of their high viscosity and low volatility. In the current work, mango seed oil is converted into respective methyl ester by transesterification process. Tests are conducted using different blends of methyl ester of mango seed oil with diesel in a diesel engine. The investigation consequences demonstrated that the MEMSO biodiesel has comparable qualities to that of diesel. The brake thermal efficiency and smoke are seen to be lower in case of MEMSO biodiesel blends than diesel. Then again, BSFC and NOx of MEMSO biodiesel blends are seen as higher than diesel. It is observed that the combustion characteristics of methyl ester of mango seed oil blends seem to be similar with that of the diesel. From this investigation, it is concluded that B25 as optimized blend and could be used as an alternative fuel in a diesel engine with no engine modifications


Sign in / Sign up

Export Citation Format

Share Document