Numerical and Experimental Investigation on Combustion and Emission Characteristics of DME Fuel in a Compression Ignition Engine

Author(s):  
Bong Woo Ryu ◽  
In Mo Youn ◽  
Hyun Gu Roh ◽  
Sung Wook Park ◽  
Chang Sik Lee

The characteristics of spray behavior and combustion of DME (dimethyl ether) were investigated using experimental and numerical approaches. For experiments, injection rates and macroscopic spray characteristics were investigated at various injection parameters by using an injection rate system and a spray visualization system. The combustion and emission characteristics were also obtained from the modified engine for DME fuel and emission measurement equipment. For numerical approaches, the combustion characteristics of DME fueled engine were predicted by a 3D-CFD code, the KIVA code coupled with the CHEMKIN (KIVA-CHEMKN) and spray behavior and evaporation were calculated by considering the thermo-chemical properties of DME. In order to calculate the fuel oxidation and emission formation such as NOx, a detailed chemical kinetic mechanism which was composed of 83 species and 360 reaction paths was considered. To simulate soot emission, two-step phenomenological model was applied. Both experimental and numerical results indicate that injection delay, ignition delay, and combustion duration of DME are shorter than that of diesel because of good evaporation and mixing characteristics. The pressure history predicted by the KIVA code agrees well with the measurements from the test engine. The amount of NOx emission was predicted by the reduced NOx mechanism shows good agreements to the experiments.

Author(s):  
Tao Yang ◽  
Ran Yi ◽  
Qiaoling Wang ◽  
Chien-Pin Chen

Kerosene and diesel fuels involved in spray combustion operations are complex fuels composed of a wide and diverse variety of hydrocarbon components. For practical numerical modeling of the evaporation and combustion phenomena in a combustor, well-designed surrogates fuels that can mimic the real fuel thermal and chemical properties can be utilized. In this study, predictions and validations of the influence of fuel on the liquid and vapor penetration characteristics within a constant-volume chamber were first performed utilizing a benchmark m-xylene/ n-dodecane, Jet-A, and diesel surrogate fuels. Then, simulations of reacting spray of a bi-component m-xylene/ n-dodecane fule, and a four-component Jet-A surrogate fuel ( n-dodecane (C12H26), iso-cetane (C16H34), trans-decalin (C10H18) and toluene (C7H8)) were studied aided by skeleton chemical kinetic mechanisms available from the literature. The results of ignition delay time, lift-off length, radicals, and the mass fraction histories of fuel species were comprehensively used to assess the performance of relevant thermophysical and chemical sub-models. Two different chemical mechanisms were compared in detail to investigate the effect of the chemical kinetics model on the flame structures and spray characteristics. It has been found that the spray ignition of multi-component fuels is remarkably influenced by the chosen chemical kinetic mechanism and less affected by the droplet evaporation models.


2021 ◽  
Author(s):  
Srinivasa Krishna Addepalli ◽  
Michael Pamminger ◽  
Riccardo Scarcelli ◽  
Thomas Wallner

Abstract Gasoline compression ignition (GCI) is a promising way to achieve high thermal efficiency and low emissions while leveraging conventional diesel engine hardware. GCI is a partially premixed combustion concept, which derives its superiority from good volatility and long ignition delay of gasoline-like fuels. The present study investigates the interaction between the piston bowl and the spray plume of a compression ignition engine that operates with a late fuel injection strategy using computational fluid dynamics (CFD) analysis. Simulations were carried out on a single cylinder of a multi-cylinder heavy-duty compression ignition engine. The engine operates at a speed of 1038 rev/min., and a compression ratio of 17. Incylinder turbulence was modelled using RNG k-ε model and the fuel spray break up was modelled using KH-RT model. A reduced chemical kinetic mechanism was used to model combustion chemistry. After validating the combustion and performance characteristics of the baseline piston against experimental results, several new piston bowl designs were generated using CAESES. Full cycle engine simulations for four selected bowl profiles were carried out. The results compare the spray-bowl interaction of the new piston bowl designs with the baseline design. It was found that the lip location and center depth of the bowl profile are the critical design parameters that influence the air utilization and heat transfer losses. The impact of spray-bowl interaction on thermal efficiency of the engine is investigated.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
V. S. Yaliwal ◽  
N. R. Banapurmath

AbstractThe present experimental study aims to examine the combustion and emission characteristics of a single cylinder four stroke direct injection diesel engine operated in dual fuel mode using dairy scum oil methyl ester (DiSOME) and its blend (B20)—producer gas combination with and without addition of hydrogen. DiSOME/B20-producer gas combination without hydrogen addition exhibited inferior performance with increased hydrocarbon and carbon monoxide emissions owing to poor physic-chemical properties of both biodiesel and inducted low calorific value gas (producer gas) compared to the same fuel combination with hydrogen. Producer gas was inducted along with air, and hydrogen was allowed to mix with air-producer gas combination in the intake manifold. Experimental investigations were conducted at all load conditions and at constant flow rate of hydrogen (8 lpm). It was noticed that that B20-hydrogen enriched producer gas combination with optimum parameters resulted in amplified thermal efficiency with reduced emission levels compared to the operation with B20/DiSOME-producer gas combination. However, investigation showed that diesel-producer gas combination with hydrogen addition provided amplified brake thermal efficiency by 3.8%, 16.4% and 13.2% compared to the diesel/DiSOME/B20—producer gas combinations, respectively, at 80% load. Hydrogen addition provided enhanced cylinder pressure and heat release rate with reduced emission levels except nitric oxide emissions. It can be concluded that the deprived combustion associated with DiSOME/B20-producer gas combination can be improved with hydrogen addition. The combination of DiSOME-producer gas operation with hydrogen addition is uniqueness of this present work.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1835-1839

An Experiment has been conducted performance and emission and combustion characteristics of a single-cylinder by using country borage methyl ester (CBM) and diesel blend in a direct injection at a constant speed diesel engine. In the past few years, the investigation on the biofuels has been considerable interest by virtue of their unique physical and chemical properties. This experiment works involves the usage of country borage methyl ester and diesel blend, to study its effect on performance, combustion and emission characteristics. Diesel and country borage methyl ester fuel blends are 20%, 40%, 60%, 80%, 100%, and varying load of 25% increment from no load to full load. The experiment was carried out for engine performance parameter such as brake thermal efficiency (BTE) of CBM 20 blend was slightly higher 3% than that of diesel. And the engine emission parameters such as hydrogen emissions is reduced 22% for CBM 20 and 32.5% for CBM 40 blend. And NOx emission was slightly increased by 5% for CBM 20 and 8% for CBM 40.


2017 ◽  
Vol 36 (3) ◽  
pp. 535-555 ◽  
Author(s):  
Mandeep Singh ◽  
Surjit Kumar Gandhi ◽  
Sunil Kumar Mahla ◽  
Sarbjot Singh Sandhu

The present work explores the use of argemone mexicana (non-edible and adulterer to mustard oil) biodiesel in multicylinder compression ignition, indirect injection engine. Argemone Mexicana biodiesel was produced by transesterification process and the important physico-chemical properties of various blends were investigated. Blends of diesel/biodiesel (AB10, AB20, AB30 and AB40) were prepared and used for analysing the engine performance and emission characteristics at varying loads (0, 25, 50 and 75%) and speeds (2500–4000 r/min). The results show improvement in indicated thermal efficiency and indicated specific fuel consumption with increased proportion of biodiesel in diesel, when compared to conventional diesel. In addition, exhaust emissions such as carbon monoxide, unburnt hydrocarbon and smoke opacity were significantly reduced by AOME/diesel blends. The improvement in engine performance and exhaust emissions were observed up to 30% blending of AOME/diesel. Beyond that, higher blend (AB40) showed deterioration in performance characteristics in contrast to AB30 but still better as compared to conventional diesel.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Zhiqiang Wang ◽  
Lijun Li

In this study, the combustion and emission characteristics of a diesel/methanol/n-butanol blended fuel engine with different pre-injection timings and pre-injection mass ratios were investigated by a computational fluid dynamics (CFD) model. The CFD model was verified by the measured results and coupled with a simplified chemical kinetics mechanism. Firstly, the corresponding three-dimensional CFD model was established by CONVERGE software and the CHEKMIN program, and a chemical kinetic mechanism containing 359 reactions and 77 species was developed. Secondly, the combustion and emission characteristics of the diesel engine with different diesel/methanol/n-butanol blended fuels were analyzed and discussed. The results showed that increases in the pre-injection timing and the pre-injection mass ratio could increase cylinder pressure and cylinder temperature and decrease soot, HC, and CO emissions. At 100% load, the maximum cylinder pressures at the start of pre-injection timing from −15 °CA to −45 °CA, were 7.71, 9.46, 9.85, 9.912, and 9.95 MPa, respectively. The maximum cylinder pressures at pre-injection fuel mass ratios from 0.1 to 0.9 were 7.98, 9.10, 9.96, 10.52, and 11.16 MPa, respectively. At 50% load, with increases of the pre-injection timing and pre-injection fuel mass ratio, the soot emission decreased by 7.30%, 9.45%, 27.70%, 66.80%, 81.80% and 11.30%, 20.03%, 71.32%, 83.80%, 93.76%, respectively, and CO emissions were reduced by 5.77%, 12.31%, 22.73%, 53.59%, 63.22% and 8.29%, 43.97%, 53.59%, 58.86%, 61.18%, respectively. However, with increases of the pre-injection timing and pre-injection mass ratio, NOx emission increased. In addition, it was found that the optimal pre-injection timing and optimal pre-injection mass ratio should be −30 °CA and 0.5, respectively. Therefore, through this study we can better understand the potential interaction of relevant parameters and propose pre-injection solutions to improve combustion and emission characteristics.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1944
Author(s):  
Shaoji Chen ◽  
Jie Tian ◽  
Jiangtao Li ◽  
Wangzhen Li ◽  
Zhiqing Zhang

In this paper, the effects of different diesel–methanol blends on the combustion and emission characteristics of diesel engines are investigated in terms of cylinder pressure, heat release rate, cylinder temperature, brake specific fuel consumption, thermal brake efficiency, brake power, and soot, nitrogen oxides, and carbon monoxide emissions in a four-stroke diesel engine. The corresponding three-dimensional Computational Fluid Dynamics (CFD) model was established using the Anstalt für Verbrennungskraftmaschinen List (AVL)-Fire coupled Chemkin program, and the chemical kinetic mechanism, including 135 reactions and 77 species, was established. The simulation model was verified by the experiment at 50% and 100% loads, and the combustion processes of pure diesel (D100) and diesel–methanol (D90M10, D80M20, and D70M30) were investigated, respectively. The results showed that the increase in methanol content in the blended fuel significantly improved the emission and power characteristics of the diesel engine. More specifically, at full load, the cylinder pressures increased by 0.78%, 1.21%, and 1.41% when the proportions of methanol in the blended fuel were 10%, 20%, and 30%, respectively. In addition, the power decreased by 2.76%, 5.04%, and 8.08%, respectively. When the proportion of methanol in the blended fuel was 10%, 20%, and 30%, the soot emissions were decreased by 16.45%, 29.35%, and 43.05%, respectively. Therefore, methanol content in blended fuel improves the combustion and emission characteristics of the engine.


Author(s):  
Rafael Torres Teixeira ◽  
Rafaela Sehnem ◽  
Letícia Kaufmann ◽  
Daniela Buske ◽  
Regis Sperotto de Quadros

Sign in / Sign up

Export Citation Format

Share Document