Spectral Microscopy Imaging System for High-Resolution and High-Speed Imaging of Fuel Sprays

Author(s):  
Kenneth F. Maassen ◽  
Farzad Poursadegh ◽  
Caroline L. Genzale

Abstract Modern high-efficiency engines utilize direct injection for charge preparation at extremely high pressures. At these conditions the scales of atomization become challenging to measure, as primary breakup occurs on the micrometer and nanosecond scales. As such, fuel sprays at these conditions have proven difficult to study via direct imaging. While high-speed cameras now exist that can shutter at tens to hundreds of nanoseconds, and long-range microscopes can be coupled to these cameras to provide high resolution images, the resolving power of these systems is typically limited by pixel size and field of view. The large pixel sizes make the realization of the diffraction-limited optical resolution quite challenging. On the other hand, limited data throughput under high repetition rate operation limits the field of view (FOV) due to reduced sensor area. Therefore, a novel measurement technique is critical to study fuel spray formation at engine-relevant conditions. In this work, we demonstrate a new high-resolution imaging technique, Spectral Microscopy, which aims to realize diffraction-limited imaging at effective framerates sufficient for capturing primary breakup in engine-relevant sprays. A spectral microscopy system utilizing a consumer-grade DSLR allows for significantly wider FOV with improved resolving power compared to high-speed cameras. Temporal shuttering is accomplished via separate and independently triggered back illumination sources, with wavelengths selected to overlap with the detection bands of the camera sensor’s RGB filter array. The RGB detection channels act as filters to capture independently timed red, green, and blue light pulses, enabling the capture of a three consecutive images at effective framerates exceeding 20 Million fps. To optimize system performance, a backlit illumination system is designed to maximize light throughput, a multi-lens setup is created, and an image processing algorithm is demonstrated that formulates a three-frame image from the camera sensor. The system capabilities are then demonstrated by imaging engine relevant diesel sprays. The spectral microscopy system detailed in this paper allows for micron-scale feature recognition at framerates exceeding 20 Million fps, thus expanding the capability for experimental research on primary breakup in fuel sprays for modern direct-injection engines.

2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Ken Maassen ◽  
Farzad Poursadegh ◽  
Caroline Genzale

Abstract Modern high-efficiency engines utilize direct injection for charge preparation at extremely high pressures. At these conditions, the scales of atomization become challenging to measure, as primary breakup occurs on the micrometer and nanosecond scales. As such, fuel sprays at these conditions have proven difficult to study via direct imaging. While high-speed cameras now exist that can shutter at tens to hundreds of nanoseconds, and long-range microscopes can be coupled to these cameras to provide high-resolution images, the resolving power of these systems is typically limited by pixel size and field of view (FOV). The large pixel sizes make the realization of the diffraction-limited optical resolution quite challenging. On the other hand, limited data throughput under high repetition rate operation limits the FOV due to reduced sensor area. Therefore, a novel measurement technique is critical to study fuel spray formation at engine-relevant conditions. In this work, we demonstrate a new high-resolution imaging technique, spectral microscopy, which aims to realize diffraction-limited imaging at effective framerates sufficient for capturing primary breakup in engine-relevant sprays. A spectral microscopy system utilizing a consumer-grade DSLR allows for significantly wider FOV with improved resolving power compared to high-speed cameras. Temporal shuttering is accomplished via separate and independently triggered back illumination sources, with wavelengths selected to overlap with the detection bands of the camera sensor's RGB filter array. The RGB detection channels act as filters to capture independently timed red, green, and blue light pulses, enabling the capture of a three consecutive images at effective framerates exceeding 20 × 106 fps. To optimize system performance, a backlit illumination system is designed to maximize light throughput, a multilens setup is created, and an image-processing algorithm is demonstrated that formulates a three-frame image from the camera sensor. The system capabilities are then demonstrated by imaging engine relevant diesel sprays. The spectral microscopy system detailed in this paper allows for micron-scale feature recognition at framerates exceeding 20 × 106 fps, thus expanding the capability for experimental research on primary breakup in fuel sprays for modern direct-injection engines.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1667 ◽  
Author(s):  
Dong Zhang ◽  
Liyin Yuan ◽  
Shengwei Wang ◽  
Hongxuan Yu ◽  
Changxing Zhang ◽  
...  

Wide Swath and High Resolution Airborne Pushbroom Hyperspectral Imager (WiSHiRaPHI) is the new-generation airborne hyperspectral imager instrument of China, aimed at acquiring accurate spectral curve of target on the ground with both high spatial resolution and high spectral resolution. The spectral sampling interval of WiSHiRaPHI is 2.4 nm and the spectral resolution is 3.5 nm (FWHM), integrating 256 channels coving from 400 nm to 1000 nm. The instrument has a 40-degree field of view (FOV), 0.125 mrad instantaneous field of view (IFOV) and can work in high spectral resolution mode, high spatial resolution mode and high sensitivity mode for different applications, which can adapt to the Velocity to Height Ratio (VHR) lower than 0.04. The integration has been finished, and several airborne flight validation experiments have been conducted. The results showed the system’s excellent performance and high efficiency.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Shaun Pacheco ◽  
Chengliang Wang ◽  
Monica K. Chawla ◽  
Minhkhoi Nguyen ◽  
Brend K. Baggett ◽  
...  

2021 ◽  
Author(s):  
Afshin Khadangi ◽  
Thomas Boudier ◽  
Vijay Rajagopal

AbstractRecent advances in high-throughput microscopy imaging have made it easier to acquire large volumes of cell images. Thanks to electron microscopy (EM) imaging, they provide a high-resolution and sufficient field of view that suits imaging large cell types, including cardiomyocytes. A significant bottleneck with these large datasets is the time taken to collect, extract and statistically analyse 3D changes in cardiac ultrastructures. We address this bottleneck with CardioVinci.


2012 ◽  
Vol 29 (12) ◽  
pp. 1811-1824 ◽  
Author(s):  
T. Kuhn ◽  
I. Grishin ◽  
J. J. Sloan

Abstract Accurate knowledge of ice particle size and shape distribution is required for understanding of atmospheric microphysical processes. While larger ice particles are easily measured with a variety of sensors, the measurement of small ice particles with sizes down to a few micrometers remains challenging. Here the authors report the development of a system that measures the size and shape of small ice particles using a novel combination of high-resolution imaging and high-speed automated image classification. The optical system has a pixel resolution of 0.2 μm and a resolving power of approximately 1 μm. This imaging instrument is integrated into a cryogenic flow tube that allows precise control of experimental conditions. This study also describes an automated method for the high-speed analysis of high-resolution particle images. Each particle is located in the image using a Sobel edge detector, the border is vectorized, and a polygon representing the border is found. The vertices of this polygon are expressed in complex coordinates, and an analytic implementation of Fourier shape descriptors is used for piecewise integration along the edges of the polygon. The authors demonstrate the capabilities of this system in a study of the early-stage growth of ice particles, which are grown for approximately 1 min at fixed temperature and saturated water vapor concentrations in the cryogenic flowtube. Ice particle shapes and size distributions are reported and compared with habit diagrams found in the literature. The capability of the shape recognition system is verified by comparison with manual classification.


1994 ◽  
Vol 144 ◽  
pp. 593-596
Author(s):  
O. Bouchard ◽  
S. Koutchmy ◽  
L. November ◽  
J.-C. Vial ◽  
J. B. Zirker

AbstractWe present the results of the analysis of a movie taken over a small field of view in the intermediate corona at a spatial resolution of 0.5“, a temporal resolution of 1 s and a spectral passband of 7 nm. These CCD observations were made at the prime focus of the 3.6 m aperture CFHT telescope during the 1991 total solar eclipse.


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Sign in / Sign up

Export Citation Format

Share Document