scholarly journals Analysis on Combined Heat and Power and Combined Heat and Power Hybrid Systems for Unconventional Drilling Operations

2021 ◽  
Author(s):  
Diego Dranuta ◽  
Derek Johnson

Abstract The United States (U.S.) has experienced a natural gas “boom” due to the development of unconventional shale plays, but well development is energy intensive. Operations use electric drilling rigs typically powered by either three high-horsepower diesel engines (HHPDE) or three dedicated natural gas engines (DNGE) and associated generators. From a first law analysis, HHPDEs peak at about 42% efficient at full load, while DNGE peak at about 30%. Most fuel energy is lost as heat rejected by the exhaust and radiators. Concurrently, during cold seasonsor or in cold regions rigs utilize boilers to provide steam throughout the rig to prevent freezing and provide comfort. Our analysis focused on a combined heat power (CHP) approach to improve the utilization factor (UF) of fossil energy consumed during unconventional drilling operations. Engine activity, boiler fuel consumption, and exhaust gas temperatures were recorded during winter drilling of an entire well in the Marcellus shale. Four characteristic activity cycles were extracted from recorded activity to represent four energy consumption scenarios. Exhaust and jacket water heat exchangers (E-HEX, JW-HEX) were designed and simulated, and results were analyzed in 0-D models for the four case scenarios. A 584-kWh hybrid energy management system (HEMS) was also designed and simulated into the model as another method to reduce fossil energy fuel consumption during well development. HHPDE UF improved on average from 35.7% to 55.7% if only E-HEX were used and improved to 72.7% if JW-HEX were also used. DNGE average UF increased from 19.0% to 34.9% using E-HEX only. HEMS utilization improved UF up to an average of 76.9% and 39.1% for HHPDE CHP and DNGE CHP systems, respectively.

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2083 ◽  
Author(s):  
Muhammad Faizan Tahir ◽  
Haoyong Chen ◽  
Muhammad Sufyan Javed ◽  
Irfan Jameel ◽  
Asad Khan ◽  
...  

Traditional energy supply infrastructures are on the brink of facing a major transformation due to energy security concerns, environment pollution, renewable energy intermittency and fossil fuel scarcity. A hybrid energy system constitutes the integration of different energy carriers like electricity, heat and fuel which play a vital role in addressing the above challenges. Various technological options like combined heat and power, heat pumps, electrolysers and energy storages ease out multiple carrier integration in an energy hub to increase system flexibility and efficiency. This work models the hybrid energy system of China for the year 2030 by using EnergyPLAN. Atmosphere decarbonization is achieved by replacing conventional coal and natural gas boilers with alternative individual heating sources like hydrogen operated micro combined heat and power natural gas micro combined heat and power and heat pumps. Moreover, rockbed storage as well as single and double penstock pumped hydro storages are added in the proposed system in order to cope with the stochastic nature of intermittent renewable energy such as wind and solar photovoltaic. The technical simulation strategy is employed to analyze the optimal combination of energy producing components by determining annual costs, fuel consumption and CO2 emissions. The results substantiate that a heat pump and double penstock pumped hydro storage addition to the individual heating and electricity network not only proves to be an economically viable option but also reduces fuel consumption and emissions.


2021 ◽  
Vol 21 (6) ◽  
pp. 4729-4739
Author(s):  
Nur H. Orak ◽  
Matthew Reeder ◽  
Natalie J. Pekney

Abstract. The United States has experienced a sharp increase in unconventional natural gas (UNG) development due to the technological development of hydraulic fracturing. The objective of this study is to investigate the emissions at an active Marcellus Shale well pad at the Marcellus Shale Energy and Environment Laboratory (MSEEL) in Morgantown, West Virginia, USA. Using an ambient air monitoring laboratory, continuous sampling started in September 2015 during horizontal drilling and ended in February 2016 when wells were in production. High-resolution data were collected for the following air quality contaminants: volatile organic compounds (VOCs), ozone (O3), methane (CH4), nitrogen oxides (NO and NO2), and carbon dioxide (CO2), as well as typical meteorological parameters (wind speed and direction, temperature, relative humidity, and barometric pressure). Positive matrix factorization (PMF), a multivariate factor analysis tool, was used to identify possible sources of these pollutants (factor profiles) and determine the contribution of those sources to the air quality at the site. The results of the PMF analysis for well pad development phases indicate that there are three potential factor profiles impacting air quality at the site: natural gas, regional transport/photochemistry, and engine emissions. There is a significant contribution of pollutants during the horizontal drilling stage to the natural gas factor. The model outcomes show that there is an increasing contribution to the engine emission factor over different well pad drilling periods through production phases. Moreover, model results suggest that the regional transport/photochemistry factor is more pronounced during horizontal drilling and drillout due to limited emissions at the site.


2020 ◽  
Author(s):  
Nur H. Orak ◽  
Matthew Reeder ◽  
Natalie J. Pekney

Abstract. The United States experienced a sharp increase in unconventional natural gas (UNG) development due to the technological development of hydraulic fracturing ("fracking"). The objective of this study is to investigate the effect of unconventional natural gas development activities on local air quality as observed at an active Marcellus Shale well pad at the Marcellus Shale Energy and Environment Laboratory (MSEEL) in Morgantown, Western Virginia, USA. Using an ambient air monitoring laboratory, continuous sampling started in September 2015 during horizontal drilling and ended in February 2016 when wells were in production. High resolution data were collected for the following air quality contaminants: volatile organic compounds (VOCs), ozone (O3), methane (CH4), nitrogen oxides (NO and NO2), carbon dioxide, (CO2), as well as typical meteorological parameters (wind speed/direction, temperature, relative humidity, and barometric pressure). Positive Matrix Factorization (PMF), a multivariate factor analysis tool, was used to identify possible sources of these pollutants (factor profiles) and determine the contribution of those sources to the air quality at the site. The results of the PMF analysis for well pad development phases indicate that there are three potential factor profiles impacting air quality at the site: natural gas, regional transport/photochemistry, and engine emissions. There is a significant contribution of pollutants during horizontal drilling stage to natural gas factor. The model outcomes show that there is an increasing contribution to engine emission factor over different well pad drilling through production phases. Moreover, model results suggest that the major contributions to the regional transport/photochemistry factor occurred during horizontal drilling and drillout stages.


Author(s):  
Chelsea W. Neil ◽  
Mohamed Mehana ◽  
Rex P. Hjelm ◽  
Marilyn E. Hawley ◽  
Erik B. Watkins ◽  
...  

Abstract By 2050, shale gas production is expected to exceed three-quarters of total US natural gas production. However, current unconventional hydrocarbon gas recovery rates are only around 20%. Maximizing production of this natural resource thus necessitates improved understanding of the fundamental mechanisms underlying hydrocarbon retention within the nanoporous shale matrix. In this study, we integrated molecular simulation with high-pressure small-angle neutron scattering (SANS), an experimental technique uniquely capable of characterizing methane behavior in situ within shale nanopores at elevated pressures. Samples were created using Marcellus shale, a gas-generative formation comprising the largest natural gas field in the United States. Our results demonstrate that, contrary to the conventional wisdom that elevated drawdown pressure increases methane recovery, a higher peak pressure led to the trapping of dense, liquid-like methane in sub-2 nm radius nanopores, which comprise more than 90% of the measured nanopore volume, due to irreversible deformation of the kerogen matrix. These findings have critical implications for pressure management strategies to maximize hydrocarbon recovery, as well as broad implications for fluid behavior under confinement.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Adam N. Bell ◽  
Maria A. Hernandez ◽  
Kevin Kremer ◽  
Daniel J. Mallinson

The natural gas industry is a boon to the economy of the United States and will continue to expand in the following decades. Hydraulic fracturing (fracking), however, produces much waste and it must be determined how to dispose of unwanted byproducts of natural gas drilling, such as produced wastewater, solid scale, and oil. Radionuclides such as uranium were deposited in the Marcellus Shale millions of years ago and are now being returned to the surface in produced water from fracking. The presence of radionuclides creates a policy conflict between laws that protect public health and the economics of disposing of produced water. This case study will help readers understand how geologic history, hydrology, and present policy are intricately related in Pennsylvania. It will address possible methods for handling wastewater—storage, reuse, treatment, injection wells, and transport—and the degree to which state and federal policies protect drinking water from produced water. In addition, the Radium Girls factory case from California helps readers consider how the mode of exposure matters for the effects of human contact with radionuclides. Students of environmental policy will be better able to understand the linkages between policy and the physical sciences.


2015 ◽  
Author(s):  
Alexander Zoelle ◽  
Dale Keairns ◽  
Lora L Pinkerton ◽  
Marc J Turner ◽  
Mark Woods ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document