Investigation of Valvetrain Dynamics Using Transient Dynamic Simulation in ANSYS

2021 ◽  
Author(s):  
Ashish Koli ◽  
Nikhil Rao ◽  
Vinod Parekar

Abstract Engine valvetrain is one of the complex mechanisms in internal combustion engine as it involves many components namely, cam, pushrod, rocker lever, crosshead, intake and exhaust valves etc. Due to many components, their interactions with each other and presence of valve lash makes the system complicated to simulate. Typically, engine system level valvetrain dynamic simulation is performed in 1D software. Aim of this study is to understand the physics governing interactions and motion of the components in the valvetrain. This is done by simulating an inline 6-cylinder engine valvetrain mechanism through transient dynamic analysis in Ansys. This paper describes an approach used to simulate the valvetrain mechanism in Ansys and associated learnings. Finite Element Analysis model considers actual stiffnesses of all components. Appropriate joints/contacts are used to model the interactions. The comparative assessment of the valvetrain forces between Ansys results and 1D simulation results shows a good match. Further, 3D simulation in Ansys captures the key characteristics of valvetrain like crosshead tilting, uneven valve actuations and closing. It is also able to predict uneven contact and polishing observed on valve tip face. Overall, this study helped to ascertain the validity of 3D FEA method. This method also enhances the understanding of the valvetrain dynamics which can be helpful in further design improvements. This paper also includes a discussion on further steps to improve analysis model to make it more realistic e.g. including hot valve lash, valve seat wear etc. These improvements will help to understand effects of valve lash on valve velocities, sudden impact loads on valves, valve stresses/fatigue, pushrod buckling etc.

1996 ◽  
Vol 20 (2) ◽  
pp. 175-186
Author(s):  
Hazem Ali Attia

In this paper the transient dynamic analysis of a vehicle with semi-trailing A-arm suspensions is presented. The equations of motion are formulated using a two step transformation. Initially, the formulation is written in terms of a dynamically equivalent system of particles. The equations of motion are then transformed to the relative joint variables. For open chains, this process automatically eliminates all of the non-working constraint forces and leads to an efficient solution and integration of the equations of motion. The results of the simulation indicate the simplicity and generality of the dynamic formulation.


2014 ◽  
Vol 484-485 ◽  
pp. 272-276
Author(s):  
Fa Jun Ding

Connecting rod is the very important connection and force bearing parts of piston engine crank mechanism; work in the role of various kinds of alternating stress. Taking a general rod from Lycoming IO-360-A1B6 aero-piston engine as the analysis object, first, a 3-D finite element model of the rod is established in ANSYS Workbench. And then, considering the influence of gas pressure in cylinder after ignition acting on the connecting rod under engines rated speed conditions, through the transient dynamic analysis, find in all load steps, the maximum equivalent stress occurred at the transition zone between the shaft and little head, and received the maximum equivalent stress versus time curve, to provide numerical basis for improving high-cycle fatigue reliability of the rod. Finally, according to equivalent stress contours of the rod when gas in cylinder peak pressure occurs, initially identified rods hazardous areas,to provide foundation for the development of standard repair process.


2013 ◽  
Vol 312 ◽  
pp. 307-311
Author(s):  
Guang Yao Zhao ◽  
Li Yang Xie ◽  
Yi Feng Zhao ◽  
Kun Yu Wang

The three-dimensional solid modeling is built based on some Automobile gearbox Product, the dangerous working conditions of static load are analyzed. On the basis of ADAMS, transient dynamic loads of gearbox at different working gears are found out. The finite element analysis modeling of gearbox casing is built. The static displacement and the stress distribution of gearbox casing are obtained, and the static strength and stiffness are evaluated. The eigenvalues of vibration of gearbox casing are solved, the coupling relationship of the excitation frequency and the gearbox casing natural frequency is analyzed. Based on the transient dynamic analysis of gearbox casing at the first gear and the reverse gear, the evaluations of the dynamic strength and dynamic stiffness are obtained and the weak position of structure is found out, which provides the beneficial information for the further study on the design of the fatigue and reliability of gearbox casing.


2011 ◽  
Vol 317-319 ◽  
pp. 405-409
Author(s):  
An Dong Jiang ◽  
Jiang Jin ◽  
Su Yang Ma ◽  
Zheng Peng Xia ◽  
Ping Liao

Abstract. The magnetic levitation linear feed unit is a new type of machine features. In machining, the tool and workpiece interaction force will be delivered to the table and make the deformation, resulting in processing errors of machine tools, machining of precision and surface quality. In this paper we established three-dimensional finite element model of the table of feed unit, use the finite element analysis software ANSYS to analysis of the transient dynamic analysis of the pre-designed table and improve the structure of the table at the design stage and forecast performance of the table and provide a theoretical basis for structure optimization.


Author(s):  
Wiriyachai Roopkumdee ◽  
Iraj Mamaghani

This paper aims to estimate dynamic buckling loads of cylindrical liquid storage tanks. Finite element analysis is performed using ANSYS computer program. Twelve different geometries of the cylindrical tanks are analyzed with height to diameter (H/D) ratios of 0.5, 1.0, 1.5, and 2.0 and the diameter to thickness (D/t) ratios of 1000, 1500, and 2000 to cover tall and short cylindrical tanks. The dynamic buckling capacities of cylindrical tanks filled with water up to 90% of their height are investigated in this study. The transient dynamic analysis is performed to find the dynamic buckling loads. Applied dynamic loads in this study are horizontal earthquake excitations in terms of acceleration (g) due to gravity. The transient dynamic analysis results indicate that the dynamic buckling loads decrease when the H/D ratios increase, and the dynamic buckling loads decrease when the D/t ratios increase. Design curves for the cylindrical tanks of various geometries subjected to earthquake accelerations are generated.


2014 ◽  
Vol 8 (1) ◽  
pp. 662-667
Author(s):  
Xiao Yanjun ◽  
He Lihu ◽  
Zhu Jiayu ◽  
Xiao Yanchun

This paper firstly established a three-dimensional modal of gear and rack transmission system. By using finite element analysis software the model is analyzed and the first six natural frequencies of the gear and rack transmission system are acquired. According to the natural frequencies, actual working speed can be adjusted to avoid resonance. In light of the modal analysis, the transient dynamic finite element model of the gear and rack transmission system is established for the transient dynamic analysis. According to the equivalent stress contour of the gear and rack in contact progress at various times and based on transient dynamic analysis, contact strength and bending strength of the gear are verified and the maximum equivalent stress position is found, providing a theoretical basis for the optimization of the gear and rack.


Author(s):  
Angran Xiao

New paradigms and accompanying software systems are necessary to support the integration of system level design and discipline level analysis activities for the implementation of product lifecycle management. In this paper, we present an information driven product development method for the integration in the context of multidisciplinary product realization. The method contains three constituents: product information model which represents the associativities among design requirements, product components, and design parameters; compromise Decision Support Problem which maps the information model directly into design problems; and knowledge based Finite Element Analysis which generates analysis model automatically from the information model. Information driven product development uses product information model as a communication media between design and analysis activities, hence provides an effective way to trace the impact of design changes, facilitates the reuse of analyses models, and supports collaborative decision-making. An electronic chip package design and analysis scenario is presented to illustrate and demonstrate this method.


Author(s):  
E. Duni ◽  
G. Monfrino ◽  
R. Saponaro ◽  
M. Caudano ◽  
F. Urbinati ◽  
...  

This work describes a numerical methodology based on the finite element method used for the transient dynamic simulation of the full vehicle rolling on different kind of obstacles. Some issues related to the tire finite element model development and its validation, by numerical-experimental comparison, have been discussed. The strategy to combine the static simulations such as the tire inflating, the vehicle weight application and suspension pre loading, with transient dynamic analysis of the car rolling over the obstacle has been chosen. The methodology, based on integration of Abaqus Implicit and Explicit codes, has been successfully applied for the dynamic simulation of Fiat Punto car passing over comfort and pothole obstacle; it is in a good stage of development for a bump obstacle (misuse airbag test).


Sign in / Sign up

Export Citation Format

Share Document