Two-dimensional lubrication study of the piston ring pack

Author(s):  
K Liu ◽  
Y. B. Xie ◽  
C. L. Gui

Based on the two-dimensional average flow model and asperity contact model, a theoretical model for the non-axisymmetrical analysis of piston ring lubrication has been suggested in this paper. The two-dimensional distribution of oil-film thickness between the piston rings and cylinder wall is obtained. Results show that the oil-film thickness along the circumference is non-uniform. Starvation is also considered in the model. The effect of secondary motion of piston assemblies on the lubrication property of the piston ring pack has also been studied.

2014 ◽  
Vol 668-669 ◽  
pp. 205-208
Author(s):  
Xiao Ri Liu ◽  
Guo Xiang Li ◽  
Shu Zhan Bai ◽  
Yu Ping Hu

With consideration of asperity contact, the minimum oil film thickness and friction power loss are calculated by simultaneous solution of the dynamics, blow-by and lubrication of piston ring pack. Take the piston ring pack in the first cylinder from the free end of a six-cylinder diesel engine for example, results show that the asperity contact takes place at all of the compression rings and oil ring; the minimum oil film thickness is 1.04μm at the top ring; the total friction loss power is 0.94kW, the top ring accounts for 37.2%, the second ring accounts for 33.0%, the oil ring accounts for 29.8%.


2019 ◽  
Vol 13 (3) ◽  
pp. 5513-5527
Author(s):  
J. W. Tee ◽  
S. H. Hamdan ◽  
W. W. F. Chong

Fundamental understanding of piston ring-pack lubrication is essential in reducing engine friction. This is because a substantial portion of engine frictional losses come from piston-ring assembly. Hence, this study investigates the tribological impact of different piston ring profiles towards engine in-cylinder friction. Mathematical models are derived from Reynolds equation by using Reynolds’ boundary conditions to generate the contact pressure distribution along the complete piston ring-pack/liner conjunction. The predicted minimum film thickness is then used to predict the friction generated between the piston ring-pack and the engine cylinder liner. The engine in-cylinder friction is predicted using Greenwood and Williamson’s rough surface contact model. The model considers both the boundary friction and the viscous friction components. These mathematical models are integrated to simulate the total engine in-cylinder friction originating from the studied piston ring-pack for a complete engine cycle. The predicted minimum film thickness and frictional properties from the current models are shown to correlate reasonably with the published data. Hence, the proposed mathematical approach prepares a simplistic platform in predicting frictional losses of piston ring-pack/liner conjunction, allowing for an improved fundamental understanding of the parasitic losses in an internal combustion engine.


Author(s):  
Yibin Guo ◽  
Wanyou Li ◽  
Dequan Zou ◽  
Xiqun Lu ◽  
Tao He

In this paper a mixed lubrication model considering lubricant supply conditions on cylinder bore has been developed for the piston ring lubrication. The numerical procedures of both fully flooded and starved lubrication were included in the model. The lubrication equations and boundary conditions at the end of strokes were discussed in detail. The effects of piston ring design parameters, such as ring face profile and ring tension, on oil film thickness, friction force and power loss under fully flooded and starved lubrication conditions due to available lubricant supply on cylinder bore were studied. The simulation results show that the oil available in the inlet region of the oil film is important to the piston ring friction power loss. With different ring face crown heights and tensions, the changes of oil film thickness and friction force were apparent under fully flooded lubrication, but almost no changes were found under starved lubrication except at the end of a stroke. In addition, the oil film thickness and friction force were affected evidently by the ring face profile offsets under both fully flooded and starved lubrication conditions, and the offset towards the combustion chamber made a large contribution to forming thicker oil film during the expansion stroke. So under different lubricant supply conditions on the cylinder bore, the ring profile and tension need to be adjusted to reduce the friction and power loss. Moreover, the effects of lubricant viscosity, surface composite roughness, and engine operating speed on friction force and power loss were also discussed.


Author(s):  
SR Bewsher ◽  
M Mohammadpour ◽  
H Rahnejat ◽  
G Offner ◽  
O Knaus

In order to accurately predict the lubricant film thickness and generated friction in any tribological contact, it is important to determine appropriate boundary conditions, taking into account the oil availability and extent of starvation. This paper presents a two-dimensional hydrodynamic model of a piston ring pack for prediction of lubricant film thickness, friction and total power loss. The model takes into account starvation caused by reverse flow at the conjunctional inlet wedge, and applied to a ring pack, comprising a compression and scraper ring. Inlet boundaries are calculated for an engine cycle of a four-cylinder, four-stroke gasoline engine operating at 1500 r/min with conditions pertaining to the New European Drive Cycle. The analysis shows the two main sources of starvation: first, due to a physical lack of inlet meniscus and second, due to reverse flow at the inlet wedge significantly affecting the prevailing conditions from the generally assumed idealised boundary conditions. Such an approach has not hitherto been reported in literature.


2019 ◽  
Vol 21 (9) ◽  
pp. 1647-1661 ◽  
Author(s):  
Cristiana Delprete ◽  
Abbas Razavykia ◽  
Paolo Baldissera

This article presents a detailed analytical model to evaluate piston skirt tribology under hydrodynamic lubrication. The contribution of the piston ring pack lubrication has been taken into account to study piston secondary motion and tribological performance. A system of nonlinear equations comprising Reynolds equation and force equilibrium is solved to calculate piston ring pack friction force and its moment about wrist pin axis. Instantaneous minimum oil film thickness at piston ring/liner interface has been estimated considering different boundary conditions: full Sommerfeld, oil separation, and Reynolds cavitation and reformation. The ring pack model has capability to be used for a wide range of ring face profiles under boundary and hydrodynamic lubrication. Piston secondary motion is evaluated using lubrication theory and equilibrium of forces and moments, to examine the effect of wrist pin location, piston skirt/liner clearance, and oil rheology. Numerical method and finite difference scheme have been used to define piston eccentricity and hydrodynamic pressure acting over the skirt.


Author(s):  
Yasuo Harigaya ◽  
Michiyoshi Suzuki ◽  
Masaaki Takiguchi

Abstract This paper describes that an analysis of oil film thickness on a piston ring of diesel engine. The oil film thickness has been performed by using Reynolds equation and unsteady, two-dimensional (2-D) energy equation with a heat generated from viscous dissipation. The temperature distribution in the oil film is calculated by using the energy equation and the mean oil film temperature is computed. Then the viscosity of oil film is estimated by using the mean oil film temperature. The effect of oil film temperature on the oil film thickness of a piston ring was examined. This model has been verified with published experimental results. Moreover, the heat flow at ring and liner surfaces was examined. As a result, the oil film thickness could be calculated by using the viscosity estimated from the mean oil film temperature and the calculated value is agreement with the measured values.


Author(s):  
K Liu ◽  
Y. B. Xie ◽  
C. L. Gui

A mixed lubrication model based on a two-dimensional average Reynolds equation is presented in this paper. It is developed for use in conjunction with a piston secondary motion analysis. The motion has been studied and the effects of structure parameters and different profiles of piston skirts on the motion are also investigated. The friction force and power loss consisting of piston skirt friction and the friction of the piston ring pack are also given.


Author(s):  
Takashi Ishijima ◽  
Akiko Shimada ◽  
Yasuo Harigaya ◽  
Michiyoshi Suzuki ◽  
Masaaki Takiguchi

An unsteady and two-dimensional thermohydrodynamic lubrication model in consideration of the ring movement and the heat flow from ring groove to piston ring was developed. The piston ring temperature in an internal combustion engine was analyzed by using the unsteady and two-dimensional form heat-conduction equation in consideration of axial movement of ring and heat flow from ring groove to ring during a cycle. The oil film temperature, oil film thickness and heat transfer between ring and liner surfaces were analyzed by using the calculated ring temperature taking into consideration cycle variation. The results are as follows. The heat flow rate around ring changes greatly with the ring movement and the ring sliding face temperature changes about 6 °C in a cycle. Then, the cycle mean temperature of ring sliding face becomes lower than the ring sliding face temperature calculated by the ring groove and liner surface temperatures under 2800 rpm and full load conditions. Therefore, the oil film viscosity is higher than that of the conventional viscosity model in which the viscosity was based on a constant ring sliding face temperature in a cycle. The oil film thickness predicted by the present method is thicker than that calculated by our previous method.


Sign in / Sign up

Export Citation Format

Share Document