Experimental Study of Flow Patterns, Pressure Drop and Flow Instabilities in Parallel Rectangular Minichannels

Author(s):  
Prabhu Balasubramanian ◽  
Satish G. Kandlikar

The use of phase change heat transfer in parallel minichannels and microchannels is one of the solutions proposed for cooling high heat flux systems. The increase in pressure drop in a two phase system is one of the problems, that need to be studied in detail before proceeding to any design phase. The pressure drop fluctuations in a network of parallel channels connected by a common head need to be addressed for stable operation of flow boiling systems. The current work focuses on studying the pressure-drop fluctuations and flow instabilities in a set of six parallel rectangular minichannels, each with 333 μm hydraulic diameter. Demonized and degassed water was used for all the experiments. Pressure fluctuations are recorded and signal analysis is performed to find the dominant frequencies and their amplitudes. These pressure fluctuations are then mapped to their corresponding flow patterns observed using a high speed camera. The results help us to relate pressure fluctuations to different flow characteristics, and their effect on flow instability.

Author(s):  
Mamoru Ozawa

This paper provides a brief review on experimental and numerical investigations of flow patterns, pressure drop, and heat transfer including critical heat flux (CHF) of flow boiling carbon-dioxide (CO2) at high pressure in mini-channels ranging 0.5mm to 3.0mm in diameter. The flow patterns of CO2 at high pressure with small density difference between vapor and liquid and low surface tension show a slightly different structure from so far observed in mini-channels with air and water. The phase mal-distribution, similar to conventional tubes, in the cross-section becomes rather significant beyond the critical Bond number, which leads to the intermittent dryout at the upper wall of the tube. So far proposed flow pattern transition criteria are ineffective there, and newly developed discrete bubble model demonstrates its high potential in predicting flow patterns. Conventional homogeneous flow model is still available in predicting pressure drop. Based on this fact, flow instability problems, which significantly affect CHF, is discussed focusing on high-pressure CO2 flow.


2021 ◽  
Vol 321 ◽  
pp. 02008
Author(s):  
Hubert Grzybowski ◽  
Iwona Zaborowska ◽  
Romuald Mosdorf

In the paper, numerical methods of data analysis recurrence quantification analysis (RQA) and self-organizing map (SOM) have been used to analyse pressure drop oscillations during the flow boiling in minichannel. The performed analysis allows us to identify flow patterns based on the character of the pressure drop oscillations. The following two-phase flow patterns have been identified: liquid flow, liquid flow with small vapour bubble, slug flow, long slug flow and confined bubble flow. In the experiment, the open-loop boiling system in a circular horizontal minichannel with an inner diameter of 1 mm was investigated. The two-phase flow patterns at the outlet of the heated section were observed through the glass tube (with an inner diameter of 1 mm) and recorded by a high-speed camera Phantom v1610.


Author(s):  
Qi Jin ◽  
John T. Wen ◽  
Shankar Narayanan

Abstract Flow boiling in microchannel evaporators is widely recognized and promising for its compact structure, lower coolant usage, high heat transfer coefficient, ability to provide higher heat fluxes, and better temperature uniformity than single-phase liquid cooling. However, critical heat flux, local dry-outs, and flow instabilities can be significant roadblocks for practical implementation. Flow instabilities, like pressure drop oscillation, could lead to non-uniform wall temperature distribution, flow reversal, and local dryout, which can be detrimental to system performance. We conducted an experimental study of a vapor compression cycle incorporating a microchannel evaporator to investigate the role of evaporator design and various system parameters on the overall performance. These parameters include the expansion valve setting, the accumulator heat load, and the evaporator heat load. While the evaporator design, the testbed, and system parameters affect the system response in unique ways, flow instability can be explained based on the overall pressure drop occurring in the system and how it varies as a function of these factors. Based on the understanding gained from this experimental study, a dynamic control strategy was developed to stabilize the system facing transient heat loads. The system can successfully address transient evaporator heat loads with feedforward control, which would otherwise lead to pressure drop oscillation. We believe this study can be helpful in further development of active control techniques to achieve multiple objectives of maintaining fixed evaporator temperature, allowing higher cooling rates, avoiding CHF, and suppressing flow instabilities, even in the presence of transient heat loads.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Fayao Xu ◽  
Huiying Wu ◽  
Zhenyu Liu

In this paper, the flow patterns during water flow boiling instability in pin-fin microchannels were experimentally studied. Three types of pin-fin arrays (in-line/circular pin-fins, staggered/circular pin-fins, and staggered/square pin-fins) were used in the study. The flow instability started to occur as the outlet water reached the saturation temperature. Before the unstable boiling, a wider range of stable boiling existed in the pin-fin microchannels compared to that in the plain microchannels. Two flow instability modes for the temperature and pressure oscillations, which were long-period/large-amplitude mode and short-period/small-amplitude mode, were identified. The temperature variation during the oscillation period of the long-period/large-amplitude mode can be divided into two stages: increasing stage and decreasing stage. In the increasing stage, bubbly flow, vapor-slug flow, stratified flow, and wispy flow occurred sequentially with time for the in-line pin-fin microchannels; liquid single-phase flow, aforementioned four kinds of two-phase flow patterns, and vapor single-phase flow occurred sequentially with time for the staggered pin-fin microchannel. The flow pattern transitions in the decreasing stage were the inverse of those in the increasing stage for both in-line and staggered pin-fin microchannels. For the short-period/small-amplitude oscillation mode, only the wispy flow occurred. With the increase of heat flux, the wispy flow and the vapor single-phase flow occupied more and more time ratio during an oscillation period in the in-line and staggered pin-fin microchannels.


Author(s):  
Jacqueline Barber ◽  
Khellil Sefiane ◽  
David Brutin ◽  
Lounes Tadrist

Boiling in microchannels remains elusive due to the lack of full understanding of the mechanisms involved. A powerful tool in achieving better comprehension of the mechanisms is detailed imaging and analysis of the two phase flow at a fundamental level. We induced boiling in a single microchannel geometry (hydraulic diameter 727 μm), using a refrigerant FC-72, to investigate several flow patterns. A transparent, metallic, conductive deposit has been developed on the exterior of rectangular microchannels, allowing simultaneous uniform heating and visualisation to be conducted. The data presented in this paper is for a particular case with a uniform heat flux of 4.26 kW/m2 applied to the microchannel and inlet liquid mass flowrate, held constant at 1.33×10−5 kg/s. In conjunction with obtaining high-speed images and videos, sensitive pressure sensors are used to record the pressure drop profiles across the microchannel over time. Bubble nucleation, growth and coalescence, as well as periodic slug flow, are observed in the test section. Phenomena are noted, such as the aspect ratio and Reynolds number of a vapour bubble, which are in turn correlated to the associated pressure drops over time. From analysis of our results, images and video sequences with the corresponding physical data obtained, it is possible to follow visually the nucleation and subsequent both ‘free’ and ‘confined’ growth of a vapour bubble over time.


Author(s):  
Jianyun Shuai ◽  
Rudi Kulenovic ◽  
Manfred Groll

Flow boiling in small-sized channels attracted extensive investigations in the past two decades due to special requirements for transfer of high heat fluxes from narrow spaces in various industrial applications. Experiments on various aspects of flow boiling in narrow channels were carried out and theoretical attempts were undertaken. But these investigations showed large differences, e.g. up till now the knowledge on the development of flow patterns in small non-circular flow passages is very limited. This paper deals with investigations on flow boiling of water in two rectangular channels with dimensions (width×depth) 2.0×4.0 mm2 and 0.5×2.0 mm2 (corresponding hydraulic diameters are 2.67 mm and 0.8 mm). The pressure at the test section exit is atmospheric. For steady-state experimental conditions the effects of heat flux, mass flux and inlet subcooling on the boiling heat transfer coefficient and the pressure drop are investigated. Flow patterns and the transition of flow patterns along the channel axis are visualized and documented with a video-camera. Bubbly flow, slug flow and annular flow are distinguished in both channels. Preliminary flow pattern maps are generated.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
Chang Yong Park ◽  
Pega Hrnjak

Abstract C O 2 flow boiling heat transfer coefficients and pressure drop in a 3.5mm horizontal smooth tube are presented. Also, flow patterns were visualized and studied at adiabatic conditions in a 3mm glass tube located immediately after a heat transfer section. Heat was applied by a secondary fluid through two brass half cylinders to the test section tubes. This research was performed at evaporation temperatures of −15°C and −30°C, mass fluxes of 200kg∕m2s and 400kg∕m2s, and heat flux from 5kW∕m2 to 15kW∕m2 for vapor qualities ranging from 0.1 to 0.8. The CO2 heat transfer coefficients indicated the nucleate boiling dominant heat transfer characteristics such as the strong dependence on heat fluxes at a mass flux of 200kg∕m2s. However, enhanced convective boiling contribution was observed at 400kg∕m2s. Surface conditions for two different tubes were investigated with a profilometer, atomic force microscope, and scanning electron microscope images, and their possible effects on heat transfer are discussed. Pressure drop, measured at adiabatic conditions, increased with the increase of mass flux and quality, and with the decrease of evaporation temperature. The measured heat transfer coefficients and pressure drop were compared with general correlations. Some of these correlations showed relatively good agreements with measured values. Visualized flow patterns were compared with two flow pattern maps and the comparison showed that the flow pattern maps need improvement in the transition regions from intermittent to annular flow.


Sign in / Sign up

Export Citation Format

Share Document