scholarly journals Convective Bubbly Flow of Water in an Annular Pipe: Role of Total Dissolved Solids on Heat Transfer Characteristics and Bubble Formation

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1566 ◽  
Author(s):  
M. M. Sarafraz ◽  
M. S. Shadloo ◽  
Zhe Tian ◽  
Iskander Tlili ◽  
Tawfeeq Abdullah Alkanhal ◽  
...  

Formation of bubbles in water inside an annulus pipe in a flow boiling regime was experimentally investigated. The effect of various variables, such as total dissolved solid materials (TDS) in terms of mass fraction, flow rate of water, and applied heat flux (HF) on the heat transfer coefficient (HTC) and bubble behavior of water, was experimentally investigated. A regression formula was fitted to estimate the average bubble diameter at various TDS values, with accuracy of <4.1% up to heat flux of 90 kW/m2. Results show that the presence of TDS materials can increase the contact angle of bubble and bubble diameter, and also promotes the HTC value of the system. However, flow rate of water suppressed bubble generation, and increased the heat transfer coefficient due to the renewal of the thermal boundary layer around the boiling surface. Likewise, it was identified that forced convective and nucleate boiling heat transfer mechanisms contribute to the flow of boiling water, and heat flux is a key parameter in determining the mechanism of heat transfer. In the present study, heat flux of 15 kW/m2 at 50 °C was the heat flux in which onset of nucleate boiling was identified inside the annulus pipe. The contact angle of water at TDS values of 300 mg/L and 1200 mg/L was 74° and 124°, respectively, showing the improvement in heat transfer characteristics of water due to the presence of TDS materials.

Fractals ◽  
2019 ◽  
Vol 27 (07) ◽  
pp. 1950111
Author(s):  
WEI YU ◽  
LUYAO XU ◽  
SHUNJIA CHEN ◽  
FENG YAO

A two-dimensional model is developed to numerically study the water flow boiling through a tree-shaped microchannel by VOF method. In this work, the bubble dynamics and flow patterns along the channel are examined. Additionally, the pressure drop, heat transfer performance and the effects of mass flow rate and heat flux on the heat transfer coefficient are analyzed and discussed. The numerical results indicate that, there are three main bubble dynamic behaviors at the wall, namely coalesce-lift-off, coalesce-slide and coalesce-reattachment. At the bifurcation in high branching level, the slug bubbles may coalesce or breakup. The flow patterns of bubbly, bubbly-slug flows occur at low branching level and slug flow occurs at high branching level. The passage of bubbles causes the increasing of fluid temperature and local pressure. Additionally, the pressure drop decreases with the branching level. The flow pattern and channel confinement effect play a vital role in heat transfer performance. The nucleate boiling dominant heat transfer is observed at low branching level, the heat transfer performance is enhanced with increasing branching level from [Formula: see text] to 2. While, at high branching level, the heat transfer performance becomes weaker due to the suppression of nucleate boiling. Moreover, the heat transfer coefficient increases with the mass flow rate and heat flux.


Author(s):  
M. A. Akhavan-Behabadi ◽  
M. Saeedinia ◽  
S. M. Hashemi

In the present study, an experimental investigation has been carried out to study the heat transfer characteristics of CuO/Base oil nanofluid flow inside horizontal oiled wire inserted tubes (roughed tubes) under constant heat flux. The nanofluids with CuO nanoparticles weight fraction ranging from 0 to 2% are prepared. The oiled wires with different wire wire diameteres and different oil pitches are used as inserts inside a horizontal plain copper tube. The nanofluid flowing inside the tube is heated by electrical heating coil wrapped around it. The convective heat transfer characteristis of the prepared nanofluids are measured during laminar fully developed flow inside horizontal plain and roughed tubes under constant heat flux. The effect of different parameters such as mass velocity, wire wire diameter, oil pith, nanofluid particles concentration and heat flux on heat transfer coefficient is studied. The heat transfer coefficient is increased when a roughed tube is used instead of a plain tube. Moreover, at the same flow conditions, by increasing of wire wire diameter and decreasing of oil pitch, the heat transfer performance is improved. Observations also show that by using nanofluid instead of base fluid, the heat transfer coefficient increases and this increase grows at higher nanoparticles concentrations. As a result, it an be concluded that increasing of wire wire diameter, decreasing of oil pitch and increasing the concentration of nanoparticle, contribute to the enhancement of heat transfer coefficient.


1980 ◽  
Vol 102 (2) ◽  
pp. 342-346 ◽  
Author(s):  
E. N. Ganic ◽  
M. N. Roppo

In this study, an experimental investigation was conducted with subcooled water film flowing over an electrically heated horizontal cylinder. The combinations of film flow rate and heat flux at which film breakdown occurs (i.e., dry patches appear on the surface) were determined. At the conditions prior to dry patch formation, the heat transfer coefficient was determined as well. The results showed that the heat flux needed to cause a dry patch increases with film flow rate. Also, prior to dry patch formation, the heat transfer coefficient increases with film flow rate. The effects of the tube spacing and the liquid film inlet temperature on the breakdown heat flux and heat transfer coefficient were also studied.


Author(s):  
Peilin Cui ◽  
Zhenyu Liu

Abstract This study experimentally investigated the flow boiling of HFE-7100 in wavy copper microchannel heat sink (20 mm × 10 mm), which was fabricated with the ultrafast laser micromachining approach, consisting of 20 wavy microchannels with wavelength of 2000 μm and wave amplitude of 100 μm with triangular cross section (200 μm × 573 μm). The experiment was conducted with the mass fluxes of 330.07–550.11 kg/(m2·s) and heat flux of 14.5–411.3 kW/m2 at an inlet temperature of 15°C. Four flow patterns including bubbly flow, slug flow, churn flow and annular flow were captured with the visualization technique. Several confined bubbles with irregular shape were observed. In the low heat flux region, the dominant flow regime of heat transfer in the microchannels is the nucleate boiling and the heat transfer coefficient increases with increasing heat flux. With the nucleate boiling suppressed gradually, the evaporation of thin liquid film begins to dominate and the heat transfer coefficient decreases with the increase of heat flux. The heat flux has a significant effect on heat transfer coefficient compared with the mass flux and vapor quality.


Author(s):  
M. Fatouh

The present work aimed at determining the condensation heat transfer characteristics of R134a on single horizontal smooth and finned tubes under different parameters. These are saturated temperature (36°C and 43°C), inlet coolant temperature (25°C and 30°C) and coolant mass flow rate (100: 800 kg/h) for smooth and finned tubes. In the case of finned tubes, the pitch to height ratio varies from 0.5 to 3.08. Experimental condensation heat transfer characteristics for R134a and R12 on a smooth tube are compared. Experimental results confirmed that the heat flux and the overall heat transfer coefficient for R134a increase when coolant mass flow rate, saturation temperature and fin height increase or as both coolant inlet temperature and fin height decrease. The influence of fin pitch, on condensation heat flux and overall heat transfer, is lower than that of fin height. However, the heat flux and the overall heat transfer coefficient for R134a are correlated with the investigated parameters. Finally, the comparison between R12 and R134a revealed that the condensation heat transfer characteristics for R134a are better than those of R12.


Author(s):  
Peng Xu ◽  
Tao Zhou ◽  
Jialei Zhang ◽  
Juan Chen ◽  
Zhongguan Fu

Abstract There are many factors that can affect the heat transfer coefficient (HTC) of supercritical water in forced and natural circulation. The correlation between the factors with the HTC under different circulation modes has an important influence on the reactor core design. By extracting the experimental data of supercritical water in forced circulation and natural circulation, the grey correlation model was used to analyze the relational degree between these factors with HTC. The results show that: Under the condition of forced circulation, there is a positive correlation between the inlet temperature, mass flow velocity, the thickness of the grid body with the HTC of supercritical water, and the order is: mass flow velocity &gt; inlet temperature &gt; the thickness of the grid body; there is a negative correlation between the pressure, heat flux with the heat transfer coefficient of supercritical water, and the order is: pressure &gt; heat flux. Under the condition of natural circulation, there is a positively correlation between heating power, inlet temperature and circulation flow rate with HTC, and the order of magnitude is: circulation flow rate &gt; heating power &gt; inlet temperature; diameter and pressure are negatively correlated with heat transfer coefficient, and the order of magnitude is: pressure &gt; diameter. In the two circulation modes, mass flow rate is an important factor affecting the heat transfer capacity of supercritical water, while the effect of heat flux on the heat transfer coefficient is contrary.


2010 ◽  
Vol 123-125 ◽  
pp. 499-502 ◽  
Author(s):  
Lei Guo ◽  
Shu Sheng Zhang ◽  
Lin Cheng

Two different types of channels are investigated which have I- and Z-shaped cross-sections with a width of 2mm. Using the numerical simulation method, the influence of wall contact angle to the process of bubble generating and growth up is studied, and the relationship between different channel shapes and pressure drop is also investigated. In the calculation process, the effects of gravity, surface tension and wall adhesion are taken into account. It is found that wall contact angle has a great influence to the morphology of bubbles. The smaller the wall contact angle is, the rounder the bubbles are, and the shorter the bubbles take to departure from the wall, otherwise, the bubbles are more difficult to depart. The variation of contact angle also has effect upon the heat transfer coefficient, the greater the wall contact angle is, the larger bubble-covered area is, thus the wall thermal resistance gets higher, and the heat transfer coefficient becomes lower. The role of surface tension in the process of boiling heat transfer is much larger than the gravity in narrow channels. The generation of bubbles dramatically disturbs the boundary layer, and the bubble bottom micro-layer can enhance the heat transfer. The heat transfer coefficient of Z-shaped channels is larger than that of I-shaped channels, while the pressure drop of the former is obviously higher.


Author(s):  
Ichiro Kano ◽  
Yuta Higuchi ◽  
Tadashi Chika

The paper describes results from an experimental study of the effect of an electric field on nucleate boiling and the critical heat flux (CHF) in pool boiling at atmospheric pressure with polished smooth boiling surface. A micro scaled electrode with slits for bubbles to come out was designed in order to create non uniform high electric field strength and to produce electrohydrodynamics (EHD) convection with the application of dc voltage. The application of high electric field strongly enhanced the heat flux and the heat transfer coefficient. From observations of the behavior of bubbles over the electrode and the boiling surface condition, the instability between the liquid and the vapor increased the heat flux, the heat transfer coefficient and the CHF.


2021 ◽  
Vol 11 (2) ◽  
pp. 751
Author(s):  
Xuefeng Gao ◽  
Yanjun Zhang ◽  
Zhongjun Hu ◽  
Yibin Huang

As fluid passes through the fracture of an enhanced geothermal system, the flow direction exhibits distinct angular relationships with the geometric profile of the rough fracture. This will inevitably affect the heat transfer characteristics in the fracture. Therefore, we established a hydro-thermal coupling model to study the influence of the fluid flow direction on the heat transfer characteristics of granite single fractures and the accuracy of the numerical model was verified by experiments. Results demonstrate a strong correlation between the distribution of the local heat transfer coefficient and the fracture morphology. A change in the flow direction is likely to alter the transfer coefficient value and does not affect the distribution characteristics along the flow path. Increasing injection flow rate has an enhanced effect. Although the heat transfer capacity in the fractured increases with the flow rate, a sharp decline in the heat extraction rate and the total heat transfer coefficient is also observed. Furthermore, the model with the smooth fracture surface in the flow direction exhibits a higher heat transfer capacity compared to that of the fracture model with varying roughness. This is attributed to the presence of fluid deflection and dominant channels.


Author(s):  
AS Sabu ◽  
Joby Mackolil ◽  
B Mahanthesh ◽  
Alphonsa Mathew

The study focuses on the aggregation kinematics in the quadratic convective magneto-hydrodynamics of ethylene glycol-titania ([Formula: see text]) nanofluid flowing through an inclined flat plate. The modified Krieger-Dougherty and Maxwell-Bruggeman models are used for the effective viscosity and thermal conductivity to account for the aggregation aspect. The effects of an exponential space-dependent heat source and thermal radiation are incorporated. The impact of pertinent parameters on the heat transfer coefficient is explored by using the Response Surface Methodology and Sensitivity Analysis. The effects of several parameters on the skin friction and heat transfer coefficient at the plate are displayed via surface graphs. The velocity and thermal profiles are compared for two physical scenarios: flow over a vertical plate and flow over an inclined plate. The nonlinear problem is solved using the Runge–Kutta-based shooting technique. It was found that the velocity profile significantly decreased as the inclination of the plate increased on the other hand the temperature profile improved. The heat transfer coefficient decreased due to the increase in the Hartmann number. The exponential heat source has a decreasing effect on the heat flux and the angle of inclination is more sensitive to the heat transfer coefficient than other variables. Further, when radiation is incremented, the sensitivity of the heat flux toward the inclination angle augments at the rate 0.5094% and the sensitivity toward the exponential heat source augments at the rate 0.0925%. In addition, 41.1388% decrement in wall shear stress is observed when the plate inclination is incremented from [Formula: see text] to [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document