Optimization of Hybrid Hydrophilic-Hydrophobic Surfaces for Dropwise Condensation Enhancement

Author(s):  
Giulio Croce ◽  
Paola D’Agaro ◽  
Nicola Suzzi

Abstract A langrangian-based phenomenological model, following the evolution of the individual droplets nucleating at random positions, is applied to the simulation and optimization of hybrid, mixed hydrophobic and hydrophilic surfaces. The proposed mathematical model was originally developed to simulate droplets pattern evolution in the framework of in-flight icing problems and takes into account the surface tension effects (via the advancing and receding contact angle values), the external force balance on the single droplets, as well as the both the condensing and coalescence process. Here, the model is extended to the case of an arbitrary curved substrate surface and a parametric analysis of different cases is carried out, looking for the parameters that help to identify the optimal design for a given set of wettability properties, nucleation site density and wet surface condensation rates. A discussion on the sensitivity of the solutions with respect to the expected high uncertainties on the estimate of some of these parameters in actual practical problems is also presented, in order to assess the effectiveness of the simulation as a design tool. The analysis is carried out for condensation enhancement on both plane surfaces and mini or micro tubes. Comparison with experimental, open literature data ensure the reliability of the approach for both geometries.

1998 ◽  
Vol 518 ◽  
Author(s):  
Sang-Ho Lee ◽  
Myong-Jong Kwon ◽  
Jin-Goo Park ◽  
Yong-Kweon Kim ◽  
Hyung-Jae Shin

AbstractHighly hydrophobic fluorocarbon films were prepared by the vapor phase (VP) deposition method in a vacuum chamber using both liquid (3M's FC40, FC722) and solid sources (perfluorodecanoic acid (CF3(CF2)8COOH), perfluorododecane (C12F26)) on Al, Si and oxide coated wafers. The highest static contact angles of water were measured on films deposited on aluminum substrate. But relatively lower contact angles were obtained on the films on Si and oxide wafers. The advancing and receding contact angle analysis using a captive drop method showed a large contact angle hysteresis (ΔH) on the VP deposited fluorocarbon films. AFM study showed poor film coverage on the surface with large hysteresis. FTIR-ATR analysis positively revealed the stretching band of CF2 groups on the VP deposited substrates. The thermal stability of films was measured at 150°C in air and nitrogen atmospheres as a function of time. The rapid decrease of contact angles was observed on VP deposited FC and PFDA films in air. However, no decrease of contact angle on them was observed in N2.


Author(s):  
Carmen L. Moraila-Martínez ◽  
Francisco J. Montes Ruiz-Cabello ◽  
Miguel A. Cabrerizo-Vílchez ◽  
Miguel A. Rodríguez-Valverde

2006 ◽  
Vol 956 ◽  
Author(s):  
Paul William May ◽  
Matthew Hannaway

ABSTRACTUltrananocrystalline diamond (UNCD) films have been deposited using hot filament chemical vapour deposition using Ar/CH4/H2 gas mixtures plus additions of B2H6 in an attempt to make p-type semiconducting films. With increasing additions of B2H6 from 0 to 40,000 ppm with respect to C, the film growth rate was found to decrease substantially, whilst the individual grain sizes increased from nm to μm. With 40,000 ppm of B2H6, crystals of boric oxide were found on the substrate surface, which slowly hydrolysed to boric acid on exposure to air. These results are rationalised using a model for UNCD growth based on competition for surface radical sites between CH3 and C atoms.


2019 ◽  
Vol 3 (4) ◽  
pp. 68 ◽  
Author(s):  
Plamen V. Petkov ◽  
Boryan Radoev

The interest to monophasic liquid capillary bridges (CB) has a long history. These shapes are attractive not only because of their interesting surface properties but also because of the possibility of their behavior to be analytically predicted by the equations of differential geometry. In the current paper we extend our previous studies by implementation of an approach for prediction of liquid gravityless CB behavior during their quasi-static stretching. It was found, that a simple linear relation, h r m ~ ln R r m , is valid the case of good wetting, 0° ≤ θ ≤ 90°, where h is the height of CB, R is the radius at the contact surface, rm is the CB waist radius, and θ is the solid/liquid (static, receding) contact angle. We experimentally studied the geometrical properties evolution of monophasic cedar oil and water CBs between two glass plates during their quasi-static (stepwise with equilibration after each step for 1–2 min.) stretching. In addition, we investigated a binary CB of a new type, resembling “sandwich”. There, due to the stronger glass wetting by the water, the oil phase is adhered at the water/gas interface, partially engulfed with a tendency to stand in the zone around the waist (minimal surface energy). During the stretching, it tends to replace the water in the CB waist region. A simple mechanism for interaction of the two immiscible liquids leading to creation of “sandwich” like binary structures, is proposed. Experiments of capillary bridges (CB) stretching between two flat surfaces have been carried for all liquids at different volume proportions. The investigation is extended also to identification of CB profile generatrix shape. We experimentally found that for monophasic CB, it can be described by a circle during the quasi-static stretching. If the CB height is increased, before the rupture, the shape evolves consecutively to an ellipse, parabola, or possibly to a hyperbola. The investigated binary CB evolves a similar way. Conclusions are drawn and directions for further investigations are given.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4558 ◽  
Author(s):  
Nur Çobanoğlu ◽  
Ziya Haktan Karadeniz ◽  
Patrice Estellé ◽  
Raul Martínez-Cuenca ◽  
Matthias H. Buschmann

Wettability is the ability of the liquid to contact with the solid surface at the surrounding fluid and its degree is defined by contact angle (CA), which is calculated with balance between adhesive and cohesive forces on droplet surface. Thermophysical properties of the droplet, the forces acting on the droplet, atmosphere surrounding the droplet and the substrate surface are the main parameters affecting on CA. With nanofluids (NF), nanoparticle concentration and size and shape can modify the contact angle and thus wettability. This study investigates the validity of single-phase CA correlations for several nanofluids with different types of nanoparticles dispersed in water. Geometrical parameters of sessile droplet (height of the droplet, wetting radius and radius of curvature at the apex) are used in the tested correlations, which are based on force balance acting on the droplet surface, energy balance, spherical dome approach and empirical expression, respectively. It is shown that single-phase models can be expressed in terms of Bond number, the non-dimensional droplet volume and two geometrical similarity simplexes. It is demonstrated that they can be used successfully to predict CA of dilute nanofluids’ at ambient conditions. Besides evaluation of CA, droplet shape is also well predicted for all nanofluid samples with ±5% error.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Sara Vahaji ◽  
Sherman Chi Pok Cheung ◽  
Guan Heng Yeoh ◽  
Jiyuan Tu

Modeling subcooled boiling flows in vertical channels has relied heavily on the utilization of empirical correlations for the active nucleation site density, bubble departure diameter, and bubble departure frequency. Following the development and application of mechanistic modeling at low pressures, the capability of the model to resolve flow conditions at elevated pressure up to 10 bar is thoroughly assessed and compared with selected empirical models. Predictions of the mechanistic and selected empirical models are validated against two experimental data at low to elevated pressures. The results demonstrate that the mechanistic model is capable of predicting the heat and mass transfer processes. In spite of some drawbacks of the currently adopted force balance model, the results still point to the great potential of the mechanistic model to predict a wide range of flow conditions in subcooled boiling flows.


2017 ◽  
Vol 29 (2) ◽  
pp. 281-300 ◽  
Author(s):  
AARON BARDALL ◽  
KAREN E. DANIELS ◽  
MICHAEL SHEARER

On a sufficiently soft substrate, a resting fluid droplet will cause significant deformation of the substrate. This deformation is driven by a combination of capillary forces at the contact line and the fluid pressure at the solid surface. These forces are balanced at the surface by the solid traction stress induced by the substrate deformation. Young's Law, which predicts the equilibrium contact angle of the droplet, also indicates an a priori radial force balance for rigid substrates, but not necessarily for soft substrates that deform under loading. It remains an open question whether the contact line transmits a non-zero force tangent to the substrate surface in addition to the conventional normal (vertical) force. We present an analytic Fourier transform solution technique that includes general interfacial energy conditions, which govern the contact angle of a 2D droplet. This includes evaluating the effect of gravity on the droplet shape in order to determine the correct fluid pressure at the substrate surface for larger droplets. Importantly, we find that in order to avoid a strain singularity at the contact line under a non-zero tangential contact line force, it is necessary to include a previously neglected horizontal traction boundary condition. To quantify the effects of the contact line and identify key quantities that will be experimentally accessible for testing the model, we evaluate solutions for the substrate surface displacement field as a function of Poisson's ratio and zero/non-zero tangential contact line forces.


1996 ◽  
Vol 67 (8) ◽  
pp. 2852-2858 ◽  
Author(s):  
Shi‐Yow Lin ◽  
Hong‐Chi Chang ◽  
Lung‐Wei Lin ◽  
Pao‐Yao Huang

Sign in / Sign up

Export Citation Format

Share Document