Effects of Taper Configurations on Heat Transfer and Pressure Drop in Single-Phase Flows in Microgaps

Author(s):  
Debora C. Moreira ◽  
Gherhardt Ribatski ◽  
Satish G. Kandlikar

Abstract This paper presents a comparison of heat transfer and pressure drop during single-phase flows inside diverging, converging, and uniform microgaps using distilled water as the working fluid. The microgaps were created on a plain heated copper surface with a polysulfone cover that was either uniform or tapered with an angle of 3.4°. The average gap height was 400 microns and the length and width dimensions were 10 mm × 10 mm, resulting in an average hydraulic diameter of approximately 800 microns for all configurations. Experiments were conducted at atmospheric pressure and the inlet temperature was set to 30 °C. Heat transfer and pressure drop data were acquired for flow rates varying from 57 to 485 ml/min and the surface temperature was monitored not to exceed 90 °C to avoid bubble nucleation, so the heat flux varied from 35 to 153 W/cm2 depending on the flow rate. The uniform configuration resulted in the lowest pressure drop, and the diverging one showed slightly higher pressure drop values than the converging configuration, possibly because the flow is most constrained at the inlet section, where the fluid is colder and presents higher viscosity. In addition, a minor dependence of pressure drop with heat flux was observed due to temperature dependent properties. The best heat transfer performance was obtained with the converging configuration, which was especially significant at low flow rates. This behavior could be explained by an increase in the heat transfer coefficient due to flow acceleration in converging gaps, which compensates the decrease in temperature difference between the fluid and the surface due to fluid heating along the gap. Overall, the comparison between the three configurations shows that converging microgaps have better performance than uniform or diverging ones for single-phase flows, and such effect is more pronounced at lower flow rates, when the fluid experiences higher temperature changes.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Chirag R. Kharangate ◽  
Ki Wook Jung ◽  
Sangwoo Jung ◽  
Daeyoung Kong ◽  
Joseph Schaadt ◽  
...  

Three-dimensional (3D) stacked integrated circuit (IC) chips offer significant performance improvement, but offer important challenges for thermal management including, for the case of microfluidic cooling, constraints on channel dimensions, and pressure drop. Here, we investigate heat transfer and pressure drop characteristics of a microfluidic cooling device with staggered pin-fin array arrangement with dimensions as follows: diameter D = 46.5 μm; spacing, S ∼ 100 μm; and height, H ∼ 110 μm. Deionized single-phase water with mass flow rates of m˙ = 15.1–64.1 g/min was used as the working fluid, corresponding to values of Re (based on pin fin diameter) from 23 to 135, where heat fluxes up to 141 W/cm2 are removed. The measurements yield local Nusselt numbers that vary little along the heated channel length and values for both the Nu and the friction factor do not agree well with most data for pin fin geometries in the literature. Two new correlations for the average Nusselt number (∼Re1.04) and Fanning friction factor (∼Re−0.52) are proposed that capture the heat transfer and pressure drop behavior for the geometric and operating conditions tested in this study with mean absolute error (MAE) of 4.9% and 1.7%, respectively. The work shows that a more comprehensive investigation is required on thermofluidic characterization of pin fin arrays with channel heights Hf < 150 μm and fin spacing S = 50–500 μm, respectively, with the Reynolds number, Re < 300.



2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Ki Wook Jung ◽  
Eunho Cho ◽  
Hyoungsoon Lee ◽  
Chirag Kharangate ◽  
Feng Zhou ◽  
...  

Abstract High performance and economically viable cooling solutions must be developed to reduce weight and volume, allowing for a wide-spread utilization of hybrid electric vehicles. The traditional embedded microchannel cooling heat sinks suffer from high pressure drop due to small channel dimensions and long flow paths in two-dimensional (2D) plane. Utilizing direct “embedded cooling” strategy in combination with top access three-dimensional (3D) manifold strategy reduces the pressure drop by nearly an order of magnitude. In addition, it provides more temperature uniformity across large area chips and it is less prone to flow instability in two-phase boiling heat transfer. This study presents the experimental results for single-phase thermofluidic performance of an embedded silicon microchannel cold plate (CP) bonded to a 3D manifold for heat fluxes up to 300 W/cm2 using single-phase R-245fa. The heat exchanger consists of a 5 × 5 mm2 heated area with 25 parallel 75 × 150 μm2 microchannels, where the fluid is distributed by a 3D-manifold with four microconduits of 700 × 250 μm2. Heat is applied to the silicon heat sink using electrical Joule-heating in a metal serpentine bridge and the heated surface temperature is monitored in real-time by infrared (IR) camera and electrical resistance thermometry. The maximum and average temperatures of the chip, pressure drop, thermal resistance, and average heat transfer coefficient (HTC) are reported for flow rates of 0.1, 0.2. 0.3, and 0.37 L/min and heat fluxes from 25 to 300 W/cm2. The proposed embedded microchannels-3D manifold cooler, or EMMC, device is capable of removing 300 W/cm2 at maximum temperature 80 °C with pressure drop of less than 30 kPa, where the flow rate, inlet temperature, and pressures are 0.37 L/min, 25 °C and 350 kPa, respectively. The experimental uncertainties of the test results are estimated, and the uncertainties are the highest for heat fluxes &lt; 50 W/cm2 due to difficulty in precisely measuring the fluid temperature at the inlet and outlet of the microcooler.



Author(s):  
Ki Wook Jung ◽  
Hyoungsoon Lee ◽  
Chirag Kharangate ◽  
Feng Zhou ◽  
Mehdi Asheghi ◽  
...  

Abstract High performance and economically viable thermal cooling solutions must be developed to reduce weight and volume, allowing for a wide-spread utilization of hybrid electric vehicles. The traditional embedded microchannel cooling heat sinks suffer from high pressure drop due to small channel dimensions and long flow paths in 2D-plane. Utilizing direct “embedded cooling” strategy in combination with top access 3D-manifold strategy reduces the pressure drop by nearly an order of magnitude. In addition, it provides more temperature uniformity across large area chips and it is less prone to flow instability in two-phase boiling heat transfer. Here, we present the experimental results for single-phase thermofluidic performance of an embedded silicon microchannel cold-plate bonded to a 3D manifold for heat fluxes up to 300 W/cm2 using single-phase R-245fa. The heat exchanger consists of a 52 mm2 heated area with 25 parallel 75 × 150 μm2 microchannels, where the fluid is distributed by a 3D-manifold with 4 micro-conduits of 700 × 250 μm2. Heat is applied to the silicon heat sink using electrical Joule-heating in a metal serpentine bridge and the heated surface temperature is monitored in real-time by Infra-red (IR) camera and electrical resistance thermometry. The experimental results for maximum and average temperatures of the chip, pressure drop, thermal resistance, average heat transfer coefficient for flow rates of 0.1, 0.2. 0.3 and 0.37 lit/min and heat fluxes from 25 to 300 W/cm2 are reported. The proposed Embedded Microchannels-3D Manifold Cooler, or EMMC, device is capable of removing 300 W/cm2 at maximum temperature 80 °C with pressure drop of less than 30 kPa, where the flow rate, inlet temperature and pressures are 0.37 lit/min, 25 °C and 350 kPa, respectively. The experimental uncertainties of the test results are estimated, and the uncertainties are the highest for heat fluxes &lt; 50 W/cm2 due to difficulty in precisely measuring the fluid temperature at the inlet and outlet of the micro-cooler.



Author(s):  
Yasir M. Shariff ◽  
T. S. Ravigururajan

Experimental results from single-phase refrigerant mixture flow in smooth and micro-coil enhanced meso-channels are presented. R-407C — a mixture of R-32 (23%)/R-125 (25%)/R-134a (52%) — is used as the working fluid and different micro-coils are used in conjunction with two meso-channels (2.78mm and 3.97 mm) to obtain distinct roughness parameters. The flow was varied over a range of Reynolds numbers and experiments were conducted over a heat flux range of 2 to 11 kW/m2. The heat transfer coefficient was found to be dependent on both the heat flux as well as mass flux levels. Results show that heat transfer characteristics are comparable to R-113, and that micro-coil inserts enhanced the heat transfer performance compared to the performance in smooth meso-channels.



2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Matthew J. Rau ◽  
Suresh V. Garimella ◽  
Ercan M. Dede ◽  
Shailesh N. Joshi

The effect of a variety of surface enhancements on the heat transfer achieved with an array of impinging jets is experimentally investigated using the dielectric fluid HFE-7100 at different volumetric flow rates. The performance of a 5 × 5 array of jets, each 0.75 mm in diameter, is compared to that of a single 3.75 mm diameter jet with the same total open orifice area, in single-and two-phase operation. Four different target copper surfaces are evaluated: a baseline smooth flat surface, a flat surface coated with a microporous layer, a surface with macroscale area enhancement (extended square pin–fins), and a hybrid surface on which the pin–fins are coated with the microporous layer; area-averaged heat transfer and pressure drop measurements are reported. The array of jets enhances the single-phase heat transfer coefficients by 1.13–1.29 times and extends the critical heat flux (CHF) on all surfaces compared to the single jet at the same volumetric flow rates. Additionally, the array greatly enhances the heat flux dissipation capability of the hybrid coated pin–fin surface, extending CHF by 1.89–2.33 times compared to the single jet on this surface, with a minimal increase in pressure drop. The jet array coupled with the hybrid enhancement dissipates a maximum heat flux of 205.8 W/cm2 (heat input of 1.33 kW) at a flow rate of 1800 ml/min (corresponding to a jet diameter-based Reynolds number of 7800) with a pressure drop incurred of only 10.9 kPa. Compared to the single jet impinging on the smooth flat surface, the array of jets on the coated pin–fin enhanced surface increased CHF by a factor of over four at all flow rates.



Author(s):  
C. Aprea ◽  
A. Greco ◽  
G. P. Vanoli

R22 is the most widely employed HCFC working fluid in vapour compression plant. HCFCs must be replaced within 2020. Major problems arise with the substitution of the working fluids, related to the decrease in performance of the plant. Therefore, extremely accurate design procedures are needed. The relative sizing of each of the components of the plant is crucial for cycle performance. For this reason, the knowledge of the new fluids heat transfer characteristics in condensers and evaporators is required. The local heat transfer coefficients and pressure drop of pure R22 and of the azeotropic mixture R507 (R125-R143a 50%/50% in weight) have been measured during convective boiling. The test section is a smooth horizontal tube made of a with a 6 mm I.D. stainless steel tube, 6 m length, uniformly heated by Joule effect. The effects of heat flux, mass flux and evaporation pressure on the heat transfer coefficients are investigated. The evaporating pressure varies within the range 3 ÷10 bar, the refrigerant mass flux within the range 200 ÷ 1000 kg/m2s, the heat flux within 0 ÷ 44 kW/m2. A comparison have been carried out between the experimental data and those predicted by means of the most credited literature relationships.



Author(s):  
Zhiqiang Zhu ◽  
Xiaxin Cao ◽  
Changqi Yan ◽  
Chunping Tian

In order to explore and analyze the heat transfer characteristics in narrow rectangular channel, experiments on local single-phase heat transfer of natural circulation in a one-side heating narrow rectangular channel have been conducted under vertical and inclined condition. The thermotechnical parameters such as inlet temperature, heat flux and inclination angle varies during the experiments. The width of the flow channel is 40 mm and the narrow gap is 2 mm. It is heated from one side with a homogeneous and constant heat flux and the working medium is deionized water. Based on the experimental results, under vertical condition, the driving force in the loop goes up and the Reynolds number also increases when the inlet temperature is elevated, which causes an increase in local Nusselt number. When the heat flux rises, the local Nusselt number increases and the heat transfer temperature difference increases. The local Nusselts number is influenced by entrance effect and the entrance region length is computed for laminar and turbulent flow. Under inclined condition, with the inclination angle from −30° to 30°, it is found that when the inclination angle is positive, the local Nusselt number in fully developed region is larger than that under vertical condition and increases with the angle value, even though the Reynolds number decreases by the effect of incline. This phenomenon is explained by giving an analysis of the natural convection, which is characterized by the normal Grashof number, in the direction perpendicular to the heating plat. Moreover, the variation of heat transfer is also interpreted on the basis of field coordination principle. However, when the inclination angle is negative, the heat transfer shows no obvious difference between vertical condition and inclined condition.



2020 ◽  
Vol 24 (1 Part A) ◽  
pp. 355-365
Author(s):  
Koray Karabulut

Plate heat exchangers have a widespread usage and the simplest parallel plate channel structures. Cross-corrugated ducts are basic channel geometries used in the plate heat exchangers. In this study, the increasing of heat transfer from the cross-corrugated triangular ducts by inserting triangular baffles with different placement angles into the channel upper side and pressure drop have been numerically investigated. Numerical calculations have been carried out to solve Navier-Stokes and energy equations by employing k-? turbulence model as 3-D and steady with ANSYS-FLUENT program. While inlet temperature of the air used as working fluid is 293 K, constant surface temperature values of the the lower corrugated channel walls are 373 K. The height of the baffle and apex angle of the corrugated duct have been taken constant as 0.5 H and 60?, respectively. Investigated Reynolds number range is 1000-6000 while the baffle placement angles are 30?, 45?, 60?, and 90?. Numerical results of this study are within 3.53% deviation with experimental study existed in literature. The obtained results have been presented as mean Nusselt number temperature and pressure variations of the fluid for each baffle angle. The temperature and velocity vector contour distributions have been also assessed for different Reynolds numbers and baffle angles. The value of the Num for the corrugated channel with 60? baffle angle is 8.2% higher than that of the 90? for the Re = 4000. Besides, for Re = 1000 the value of the pressure drop is 39% lower in the channel with 60? baffle angle than that of 90?.



2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Ki Wook Jung ◽  
Sougata Hazra ◽  
Heungdong Kwon ◽  
Alisha Piazza ◽  
Edward Jih ◽  
...  

Abstract Thermal management of power electronics modules is one of the limiting factors in the peak power capability of the traction inverter system and overall efficiency of the e-drive. Liquid cooling using embedded microchannels with a three-dimensional (3D)-manifold cooler (EMMC) is a promising technology capable of removing heat fluxes of &gt;1 kW/cm2 at tens of kPa pressure drop. In this work, we utilize computational fluid dynamics (CFD) simulations to conduct a parametric study of selected EMMC designs to improve the thermofluidic performance for a 5 mm × 5 mm heated area with the applied heat flux of 800 W/cm2 using single-phase water as working fluid at inlet temperature of 25 °C. We implemented strategies such as: (i) symmetric distribution of manifold inlet/outlet conduits, (ii) reducing the thickness of cold-plate (CP) substrate, and (iii) increasing fluid–solid interfacial area in CP microchannels, which resulted in a reduction in thermal resistance from 0.1 for baseline design to 0.04 cm2 K/W, while the pressure drop increased from 8 to 37 kPa.



Author(s):  
Ankit Kalani ◽  
Satish G. Kandlikar

Flow boiling with microchannel can dissipate high heat fluxes at low surface temperature difference. A number of issues, such as instabilities, low critical heat flux (CHF) and low heat transfer coefficients, have prevented it from reaching its full potential. A new design incorporating open microchannels with uniform and tapered manifold (OMM) was shown to mitigate these issues successfully. Distilled, degassed water at 80 mL/min is used as the working fluid. Plain and open microchannel surfaces are used as the test sections. Heat transfer and pressure drop performance for uniform and tapered manifold with both the surfaces are discussed. A low pressure drop of 7.5 kPa is obtained with tapered manifold and microchannel chip at a heat flux of 263 W/cm2 without reaching CHF. The pressure drop data is further compared with the homogenous model and the initial results are presented.



Sign in / Sign up

Export Citation Format

Share Document