Multi-Dimensional Thermal-Hydraulic Analysis for Horizontal Tube Type PCCS

Author(s):  
Kenji Arai ◽  
Tomohisa Kurita ◽  
Mikihide Nakamaru ◽  
Yasunobu Fujiki ◽  
Hideo Nakamura ◽  
...  

A passive containment cooling system (PCCS) using a shell-and-tube type heat exchanger has been developed as a decay heat removal system following a severe accident. A horizontal heat exchanger has been studied for the PCCS heat exchanger since it has several advantages over a vertical large diameter tube heat exchanger that was originally proposed for the SBWR. Based on the fundamental thermal-hydraulic test using a single horizontal U-tube, the feasibility of the horizontal tube type PCCS has been confirmed, and the analysis models for the steam condensation heat transfer with a non-condensable and the pressure loss with steam condensation have been established. In addition, the criterion for the film dryout type heat transfer deterioration in the boiling side has been clarified in the test. The heat exchanger performance is affected by the multi-dimensional thermal-hydraulic behavior in the cooling water pool and the interactions among the multiple heat transfer tubes. In order to clarify the multi-dimensional behavior, numerical analyses have been conducted employing a two-fluid model. From the analyses results, it has been confirmed that the horizontal PCCS heat exchanger meets the design requirements for both the heat removal and the pressure loss and there would be no film dryout type heat transfer deterioration occurred in the cooling pool.

Author(s):  
A. V. Morozov ◽  
O. V. Remizov ◽  
A. A. Tsyganok

The experimental investigations of non-condensable gases effect on the steam condensation inside multirow horizontal tube bundle of heat exchanger under heat transfer to boiling water were carried out at the large-scale test facility in the Institute for Physics and Power Engineering (IPPE). The experiments were carried out for natural circulation conditions in primary and secondary circuits of the facility at primary circuit steam pressure of Ps1 = 0.34 MPa. The experimental heat exchanger’s tube bundle consists of 248 horizontal coiled tubes arranged in 62 rows. Each row consists of 4 stainless steel tubes of 16 mm in outer diameter, 1.5 mm in wall thickness and of 10.2 m in length. The experimental heat exchanger was equipped with more than 100 thermocouples enabling the temperatures of primary and secondary facility circuits to be controlled in both tube bundle and in the inter-tubular space. The non-condensable gases with different density — nitrogen and helium were used in the experiments. The volumetric content of gases in tube bundle amounted to ε = 0.49. The empirical correlation for the prediction of the relative heat transfer coefficient k/k0 = f (ε) for steam condensation in steam-gas mixture was obtained.


Author(s):  
Wenzhong Zhou ◽  
Shripad T. Revankar

One of the engineered safety systems in the advanced boiling water reactor is a passive containment cooling system (PCCS) which is composed of a number of vertical heat exchanger. A set of steam condensation experiments is conducted to evaluate the heat removal capacity of a PCCS condenser. A condensing tube is submerged in a water pool where condensation heat is transferred by secondary boiling heat transfer. The specific design of condensing tube is based on scaling analysis from the PCCS design of ESBWR. The two condensing tubes have same height (0.9m) but different inside diameters, 26.6mm and 52.5mm, respectively. Condensation heat transfer coefficients (HTC) are obtained under various test conditions, such as different primary pressure (150 – 450 kPa), inlet steam flow rate (1 – 5 g/s), air mass fraction (0 – 20%) and tube size (26.6 mm and 52.5 mm ID). The effects of these parameters to condensation performance are evaluated.


Author(s):  
T Kim ◽  
H P Hodson ◽  
T J Lu

A novel heat exchanger medium, a high-porosity (0.938) lattice-frame material (LFM), has been introduced for possible use in mechanically and thermally loaded heat exchanger applications. The LFM is made up of circular cylinders, forming tetrahedral unit cells. This paper describes the results of experiments and numerical simulation leading to a detailed understanding of the flow structure, pressure loss and heat transfer mechanisms. It is shown that the circular LFM struts are responsible for approximately 85 per cent of the overall pressure losses in the unit cell by means of form drag at high Reynolds number. The LFM causes heat removal from the substrate by promoting flow mixing and also contributes to the overall heat transfer by convection from the strut surfaces. If a high thermal conductivity material is used, the strut and substrate contribute 57 and 43 per cent respectively of the total heat transfer. Steady numerical simulations show that a porosity of approximately 0.8 provides the best heat transfer performance for a fixed mass flowrate. However, the pressure loss monotonically increases as the porosity decreases within a range of porosity, 0.7 ≤ ε ≤ 0.938.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1175
Author(s):  
Tereza Kroulíková ◽  
Tereza Kůdelová ◽  
Erik Bartuli ◽  
Jan Vančura ◽  
Ilya Astrouski

A novel heat exchanger for automotive applications developed by the Heat Transfer and Fluid Flow Laboratory at the Brno University of Technology, Czech Republic, is compared with a conventional commercially available metal radiator. The heat transfer surface of this heat exchanger is composed of polymeric hollow fibers made from polyamide 612 by DuPont (Zytel LC6159). The cross-section of the polymeric radiator is identical to the aluminum radiator (louvered fins on flat tubes) in a Skoda Octavia and measures 720 × 480 mm. The goal of the study is to compare the functionality and performance parameters of both radiators based on the results of tests in a calibrated air wind tunnel. During testing, both heat exchangers were tested in conventional conditions used for car radiators with different air flow and coolant (50% ethylene glycol) rates. The polymeric hollow fiber heat exchanger demonstrated about 20% higher thermal performance for the same air flow. The efficiency of the polymeric radiator was in the range 80–93% and the efficiency of the aluminum radiator was in the range 64–84%. The polymeric radiator is 30% lighter than its conventional metal competitor. Both tested radiators had very similar pressure loss on the liquid side, but the polymeric radiator featured higher air pressure loss.


Author(s):  
Li-Yong Han ◽  
Lin Yang ◽  
Shan Zhou ◽  
Shen Wang ◽  
Chun-Lai Tian ◽  
...  

The passive containment cooling system (PCCS) of the 3rd generation APWR utilizes natural phenomena to transfer the heat released from the reactor to the environment during postulated designed basic accidents. Steam condensation on the inner surface of the containment shell is one of the most dominate mechanism to keep the ambient conditions within the design limits. Extensive experiment and theoretical research shows condensation is a complex process, gas pressure, film temperature and velocity of the gas have impact on the heat transfer coefficient. To span the expected range of conditions and provide proper model for evaluating the condensation heat transfer process, SCOPE test facility was designed by State Nuclear Power Technology Research & Development Centre (SNPTRD) in various conditions anticipated the operating range of CAP1400 in accident conditions. Pressurized test section with a rectangular flowing channel was used, with one of the walls cooled to maintain low temperature for condensing, supplying systems was designed for different pressures, gas temperatures, velocities and coolant water temperatures. Facility components, test section structure, supplying systems and measurement technology were described in this paper, also results of some pre-tests was introduce to show property of the facility.


2007 ◽  
Vol 36 (4) ◽  
pp. 215-229
Author(s):  
Kiyoshi Kawaguchi ◽  
Kenichi Okui ◽  
Takahiro Shimoura ◽  
Takaki Ohkouchi ◽  
Hiroyuki Osakabe ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Zhao ◽  
Xiang Zhang ◽  
Chunlai Tian ◽  
Zhan Gao

As the heat transfer surface in the passive containment cooling system, the anticorrosion coating (AC) of steel containment vessel (CV) must meet the requirements on heat transfer performance. One of the wall surface ACs with simple structure, high mechanical strength, and well hydrophobic characteristics, which is conductive to form dropwise condensation, is significant for the heat removal of the CV. In this paper, the grooved structures on silicon wafers by lithographic methods are systematically prepared to investigate the effects of microstructures on the hydrophobic property of the surfaces. The results show that the hydrophobicity is dramatically improved in comparison with the conventional Wenzel and Cassie-Baxter model. In addition, the experimental results are successfully explained by the interface state effect. As a consequence, it is indicated that favorable hydrophobicity can be obtained even if the surface is with lower roughness and without any chemical modifications, which provides feasible solutions for improving the heat transfer performance of CV.


2021 ◽  
Author(s):  
praveen math

Abstract Shell and Tube heat exchangers are having special importance in boilers, oil coolers, condensers, pre-heaters. They are also widely used in process applications as well as the refrigeration and air conditioning industry. The robustness and medium weighted shape of Shell and Tube heat exchangers make them well suited for high pressure operations. The aim of this study is to experiment, validate and to provide design suggestion to optimize the shell and tube heat exchanger (STHE). The heat exchanger is made of acrylic material with 2 baffles and 7 tubes made of stainless steel. Hot fluid flows inside the tube and cold fluid flows over the tube in the shell. 4 K-type thermocouples were used to read the hot and cold fluids inlet and outlet temperatures. Experiments were carried out for various combinations of hot and cold water flow rates with different hot water inlet temperatures. The flow conditions are limited to the lab size model of the experimental setup. A commercial CFD code was used to study the thermal and hydraulic flow field inside the shell and tubes. CFD methodology is developed to appropriately represent the flow physics and the procedure is validated with the experimental results. Turbulent flow in tube side is observed for all flow conditions, while the shell side has laminar flow except for extreme hot water temperatures. Hence transition k-kl-omega model was used to predict the flow better for transition cases. Realizable k- epsilon model with non-equilibrium wall function was used for turbulent cases. Temperature and velocity profiles are examined in detail and observed that the flow remains almost uniform to the tubes thus limiting heat transfer. Approximately 2/3 rd of the shell side flow does not surround the tubes due to biased flow contributing to reduced overall heat transfer and increased pressure loss. On the basis of these findings an attempt has been made to enhance the heat transfer by inducing turbulence in the shel l side flow. The two baffles were rotated in opposite direction to each other to achieve more circulation in the shell side flow and provide more contact with tube surface. Various positions of the baffles were simulated and studied using CFD analysis and th e results are summarized with respect to heat transfer and pressure loss.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qiming Men ◽  
Xuesheng Wang ◽  
Xiang Zhou ◽  
Xiangyu Meng

Aiming at the heat transfer calculation of the Passive Residual Heat Removal Heat Exchanger (PRHR HX), experiments on the heat transfer of C-shaped tube immerged in a water tank were performed. Comparisons of different correlation in literatures with the experimental data were carried out. It can be concluded that the Dittus-Boelter correlation provides a best-estimate fit with the experimental results. The average error is about 0.35%. For the tube outside, the McAdams correlations for both horizontal and vertical regions are best-estimated. The average errors are about 0.55% for horizontal region and about 3.28% for vertical region. The tank mixing characteristics were also investigated in present work. It can be concluded that the tank fluid rose gradually which leads to a thermal stratification phenomenon.


Sign in / Sign up

Export Citation Format

Share Document