On Synergy Between a High Temperature Gas-Cooled Reactor and a LNG Vaporization Plant

Author(s):  
Charles W. Morrow

The Liquefied Natural Gas (LNG) chain of processes consumes the equivalent of 10% of initial natural gas flow for liquefaction, transportation and regasification of the natural gas. It is possible with the right process to recover some of this lost investment during the regasification process. The High Temperature Gas Cooled Reactor (HTGR) nuclear power plant appears to possess the characteristics needed to accomplish this recovery. This synergy of processes and fluid properties between an LNG regasification plant and an HTGR provides an opportunity to enhance an already efficient nuclear power generation scheme. Boiling LNG (112 K) provides an ideal cold side heat sink for the helium based Brayton cycle of the HTGR. Helium remains in the gas phase at these low temperatures. The resulting large temperature difference (1000 K) between the high temperature and low temperature sides of a thermal cycle means Carnot efficiencies approach 90%. Achievable efficiencies approach 77%, an increase from 48% for current ambient temperature cooled HTGR designs. Thus a LNG/HTGR plant can deliver half again more power for similar capital investments and operating costs. In addition, boiling LNG with helium saves fuel gas costs for the regasification plant. This paper will show that this combination is feasible and economic. Since both processes are designed to run at maximum capacity, duty cycles and plant availability criteria match. For coastal locations, both processes possess similar site selection criteria. Finally, combining the processes will impose no unmanageable safety constraints on either system and in fact could make safe operation easier to attain. This paper will provide general overviews of an HTGR power plant and of the LNG-to-market sequence, concentrating on regasification plants. The paper will then describe a process that combines an HTGR power plant with an LNG regasification facility to the advantage of both. At full load, the economic benefit for a dual installation supporting what would be a 1.1 GWe power plant before improvement would be approximately $423 million per year.

Author(s):  
Jia Qianqian ◽  
Guo Chao ◽  
Li Jianghai ◽  
Qu Ronghong

The nuclear power plant with two modular high-temperature gas-cooled reactors (HTR-PM) is under construction now. The control room of HTR-PM is designed. This paper introduces the alarm displays in the control room, and describes some verification and validation (V&V) activities of the alarm system, especially verification for some new human factor issues of the alarm system in the two modular design. In HTR-PM, besides the regular V&V similar to other NPPs, the interference effect of the alarm rings of the two reactor modules at the same time, and the potential discomfort of the two reactor operators after shift between them are focused. Verifications at early stage of the two issues are carried on the verification platform of the control room before the integrated system validation (ISV), and all the human machine interfaces (HMIs) in the control room, including the alarm system are validated in ISV. The test results on the verification platform show that the alarm displays and rings can support the operators understand the alarm information without confusion of the two reactors, and the shift between the two reactor operators have no adverse impact on operation. The results in ISV also show that the alarm system can support the operators well.


Author(s):  
Duo Li ◽  
Huasheng Xiong ◽  
Chao Guo

High Temperature gas-cooled Reactor-Pebble bed Module (HTR-PM) Reactor Protection System (RPS) is a dedicated system to be designed and developed according to HTR-PM Nuclear Power Plant reactor protection specifications. HTR-PM RPS has the framework of four redundant channels and has two independent and diverse subsystem x and subsystem y to perform different protection functions, which would decrease the potential common cause failure caused by software and increase the system reliability.


Author(s):  
Di Jiang ◽  
Zhe Dong

Abstract Modular high temperature gas-cooled reactor (MHTGR) is a small modular reactor (SMR) with inherent safety, which is suitable for load following to improve economic competitiveness. The heat regenerative system for MHTGR nuclear power plant, is crucial for the improvement of thermal efficiency. Traditionally, the enthalpy drop distribution method (EDM) is used to study the relationships between thermal efficiency and distribution of extraction steam. However, this strategy is mainly used for off-line design of steam turbine under rated conditions. For load following operation, it is hard to guarantee the extraction steam distribution of EDM due to the highly nonlinear “flowrate-pressure-temperature” coupling of the fluid network. Thus, in this paper, the thermal efficiency is derived analytically based on the steady state model of fluid network. Then the thermal efficiency optimization is cast into a nonlinear programming problem, in which physical constraints can be considered explicitly. The proposed method for extraction steam distribution is of significance for improving the thermal efficiency of normal operation of nuclear power plant.


2018 ◽  
Vol 25 (s1) ◽  
pp. 204-210 ◽  
Author(s):  
Natalia Szewczuk-Krypa ◽  
Marta Drosińska-Komor ◽  
Jerzy Głuch ◽  
Łukasz Breńkacz

Abstract The article presents results of efficiency calculations for two 560 MW nuclear cycles with high-temperature gas-cooled reactor (HTGR). An assumption was made that systems of this type can be used in so-called marine nuclear power plants. The first analysed system is the nuclear steam power plant. For the steam cycle, the efficiency calculations were performed with the code DIAGAR, which is dedicated for analysing this type of systems. The other system is the power plant with gas turbine, in which the combustion chamber has been replaced with the HTGR. For this system, a number of calculations were also performed to assess its efficiency. Moreover, the article names factors in favour of floating nuclear power plants with HTGRs, which, due to passive safety systems, are exposed to much smaller risk of breakdown than other types of reactors which were in common use in the past. Along with safety aspects, it is also economic and social aspect which make the use of this type of systems advisable.


Author(s):  
Dmitry V. Nesterovich ◽  
Oleg G. Penyazkov ◽  
Yu. A. Stankevich ◽  
M. S. Tretyak ◽  
Vladimir V. Chuprasov ◽  
...  

1999 ◽  
Vol 572 ◽  
Author(s):  
Jingxi Sun ◽  
J. M. Redwing ◽  
T. F. Kuech

ABSTRACTA comparative study of two different MOVPE reactors used for GaN growth is presented. Computational fluid dynamics (CFD) was used to determine common gas phase and fluid flow behaviors within these reactors. This paper focuses on the common thermal fluid features of these two MOVPE reactors with different geometries and operating pressures that can grow device-quality GaN-based materials. Our study clearly shows that several growth conditions must be achieved in order to grow high quality GaN materials. The high-temperature gas flow zone must be limited to a very thin flow sheet above the susceptor, while the bulk gas phase temperature must be very low to prevent extensive pre-deposition reactions. These conditions lead to higher growth rates and improved material quality. A certain range of gas flow velocity inside the high-temperature gas flow zone is also required in order to minimize the residence time and improve the growth uniformity. These conditions can be achieved by the use of either a novel reactor structure such as a two-flow approach or by specific flow conditions. The quantitative ranges of flow velocities, gas phase temperature, and residence time required in these reactors to achieve high quality material and uniform growth are given.


Author(s):  
R. G. Adams ◽  
F. H. Boenig

The Gas Turbine HTGR, or “Direct Cycle” High-Temperature Gas-Cooled, Reactor power plant, uses a closed-cycle gas turbine directly in the primary coolant circuit of a helium-cooled high-temperature nuclear reactor. Previous papers have described configuration studies leading to the selection of reactor and power conversion loop layout, and the considerations affecting the design of the components of the power conversion loop. This paper discusses briefly the effects of the helium working fluid and the reactor cooling loop environment on the design requirements of the direct-cycle turbomachinery and describes the mechanical arrangement of a typical turbomachine for this application. The aerodynamic design is outlined, and the mechanical design is described in some detail, with particular emphasis on the bearings and seals for the turbomachine.


Sign in / Sign up

Export Citation Format

Share Document