Enhanced Thermal Conductivity UO2-GaN Fuel, Proposed Fabrication Methods and Multiphysics Fuel Behavior Analysis

Author(s):  
Wei Zhou ◽  
Rong Liu ◽  
Wenzhong Zhou

In this paper, we first propose a novel composite nuclear fuel of UO2-GaN, which has never been reported before, and then its fully coupled multiphysics fuel performance is investigated using the CAMPUS code developed by ourselves. We propose two different fabrication methods to obtain the UO2-GaN fuel, which are Green Granule/Slug Bisque and Spark Plasma Sintering, respectively, resulting in different fuel thermal conductivities. By comparing two kinds of UO2-GaN fuel which are fabricated by two methods, we found that fuel fabricated by Green Granule/Slug Bisque possesses high thermal conductivity and performs well during the reactor operation. The gap width, gap conductance, fission gas release, plenum pressure, deviation of oxygen to metal ratio and displacement are all studied in this work. The performance of this novel fuel is also compared with the traditional UO2 fuel. The UO2-GaN enhanced thermal conductivity composite fuel shows the potential of decreasing the fuel temperature, and improving fuel performance and reactor safety. This makes GaN a good candidate to fabricate composite fuel with UO2 from the thermal standpoint. However, this work is to conduct an exploratory approach to the effect for the GaN addition to UO2 fuel with very limited data. So, further studies are still needed on GaN’s compatibility with UO2, neutronic behavior, fission product retention capabilities and irradiation performance, both on experimental measurements and numerical simulations.

2012 ◽  
Vol 1444 ◽  
Author(s):  
Sunghwan Yeo ◽  
Edward Mckenna ◽  
Ronald Baney ◽  
Ghatu Subhash ◽  
James Tulenko

ABSTRACTEnhanced thermal conductivity oxide fuels offer increases in both safety and efficiency of commercial light water reactors. Low-temperature oxidative sintering and Spark Plasma Sintering (SPS) techniques have been used to produce UO2-SiC composite pellets. Oxidative sintering performed for 4 hours at 1200∼1600oC and SPS was employed only for 5 mins at the same temperature. While oxidative sintering failed to achieve enhanced thermal conductivity, the SPS sintered pellet obtained promising features such as higher density, better interfacial contact, and reduced chemical reaction. Thermal conductivity measurement at 100oC, 500oC, and 900oC revealed maximum 62% higher thermal conductivity value, when compared to UO2 pellets, in SPS sintered UO2-10vol% SiC composite pellet. The result shows that the SPS technique is required to sinter UO2-SiC nuclear fuel pellets with a high value of thermal conductivity.


Author(s):  
Zhaodandan Ma ◽  
Tong Liu ◽  
Rui Li ◽  
Maozhou Sun ◽  
Zhiwei Lu

In order to improve nuclear reactor’s performance and safety, a new-type fuel, Inert Matrix Dispersion Pellet (IMDP) with greatly enhanced thermal conductivity was studied. In this paper, the pellet was developed by Spark Plasma Sintering Technique (SPS), which brings an improved thermal conductivity compared with normal method and exhibits fully dense SiC matrix with a higher TRISO volume in kernel of pellet. Thermal-physical properties of the IMDP from room temperature to 1400 °C were investigated. The thermal conductivity improved 1100% at room temperature and 974% under 1000°C when TRISO volume is 40%, which behave much better than traditional UO2 fuel. The thermal diffusivity reduced and heat capacity increased at different TRISO volumes, linearly implied stable geometry at high temperature. From CT test we can see an intact structure of uniform TRISO granules. For comparison, modeling thermal conductivity is analyzed by FEM, which shows lower than measured data, indicating an optimized technology of this new method. Advantages of SPS will be discussed as well.


2007 ◽  
Vol 352 ◽  
pp. 227-231 ◽  
Author(s):  
Qiang Shen ◽  
Z.D. Wei ◽  
Mei Juan Li ◽  
Lian Meng Zhang

AlN ceramics doped with yttrium oxide (Y2O3) as the sintering additive were prepared via the spark plasma sintering (SPS) technique. The sintering behaviors and densification mechanism were mainly investigated. The results showed that Y2O3 addition could promote the AlN densification. Y2O3-doped AlN samples could be densified at low temperatures of 1600-1700oC in 20-25 minutes. The AlN samples were characterized with homogeneous microstructure. The Y-Al-O compounds were created on the grain boundaries due to the reactions between Y2O3 and Al2O3 on AlN particle surface. With increasing the sintering temperature, AlN grains grew up, and the location of grain boundaries as well as the phase compositions changed. The Y/Al ratio in the aluminates increased, from Y3Al5O12 to YAlO3 and to Y4Al2O9. High-density, the growth of AlN grains and the homogenous dispersion of boundary phase were helpful to improve the thermal conductivity of AlN ceramics. The thermal conductivity of 122Wm-1K-1 for the 4.0 mass%Y2O3-doped AlN sample was reached.


2014 ◽  
Vol 722 ◽  
pp. 25-29 ◽  
Author(s):  
Q.L. Che ◽  
X.K. Chen ◽  
Y.Q. Ji ◽  
Y.W. Li ◽  
L.X. Wang ◽  
...  

The carbide forming is proposed to improve interfacial bonding between diamond particles and copper-matrix for diamond/copper composites. The volume fraction of diamond and minor titanium are optimized. The microstructures, thermal properties, interface reaction production and its effect of minor titanium on the properties of the composites are investigated. The results show that the bonding force and thermal conductivity of the diamond/Cu-Ti alloys composites is much weaker and lower than that of the coated-diamond/Cu. the thermal conductivity of coated-60 vol. % diamond/Cu composites is 618 W/m K which is 80 % of the theoretical prediction value. The high thermal conductivity has been achieved by forming the titanium carbide at diamond/copper interface to gain a good interface.


2014 ◽  
Vol 2 (38) ◽  
pp. 15829-15835 ◽  
Author(s):  
Kriti Tyagi ◽  
Bhasker Gahtori ◽  
Sivaiah Bathula ◽  
A. K. Srivastava ◽  
A. K. Shukla ◽  
...  

Intrinsically ultra-low thermal conductivity and electrical transport in single-phase Cu2SbSe3 synthesized employing a solid state reaction and spark plasma sintering.


2018 ◽  
Vol 50 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Nouari Saheb ◽  
Muhammad Khan

In this work, compressive and thermal properties of aluminum, milled aluminum, and Al-10Al2O3 composite processed via ball milling (BM) and spark plasma sintering (SPS) were investigated. The microstructural features of powders and sintered samples were characterized using optical and scanning electron microscopy. A universal testing machine was used to determine the compressive properties of the consolidated samples. The thermal conductivity and coefficient of thermal expansion of the developed materials were characterized using a hot disc thermal constant analyzer and a dilatometer, respectively. The Al-10Al2O3 composite possessed hardness of 1309.7 MPa, yield strength of 311.4 MPa, and compressive strength of 432.87 MPa compared to hardness of 326.3 MPa, yield strength of 74.33 MPa, and compressive strength of 204.43 MPa for aluminum. The Al-10Al2O3 composite had thermal conductivity value 81.42 W/mK compared to value of 198.09 W/mK for aluminum. In the temperature range from 373 K to 723 K, the composite had lower CTEs ranging from 10 ? 10?6 to 22 ? 10?6/K compared to 20 ? 10?6 to 30 ? 10?6/K for aluminum.


Sign in / Sign up

Export Citation Format

Share Document