Melting Simulation Using a Particle Method With Angular Momentum Conservation

Author(s):  
Masahiro Kondo ◽  
Shota Ueda ◽  
Koji Okamoto

To analyze the core degradation and relocation behavior of melts in a severe accident of nuclear power plant, the melting and solidification in the complexed geometry is to be calculated. For the calculation of such complexed behavior, a new particle method conserving angular momentum is proposed and applied for the melting simulation. When solid melts, it may move like a rigid body. The angular momentum conservation is important to capture such kind of motion. The potential of the new particle method was confirmed with a calculation of the melting in dam break geometry and cantilever geometry.

Author(s):  
Toru Yamamoto

Based on radioactivity measurement of soil samples in the site of Fukushima Dai-Ichi Nuclear Power Station, radioactivity of Sr, Nb, Mo, Tc, Ru, Ag, Te, I, Cs, Ba, La, Pu, Am, and Cm isotopes were compiled as radioactivity ratios to 137Cs. By exponentially fitting or averaging, the radioactivity ratios at the core shutdown were estimated. They were divided by those of the fuel of the core at the shutdown to obtain a deposited radioactivity fractions of the nuclides as relative values to 137Cs, which also correspond to deposition fractions of the elements as relative values to Cs. They were estimated to be orders of 10−4 to 10−3 for Sr, 10−4 for Nb, 10−2 to 10−1 for Mo, 10−1 for Ag, 10−1 to 100 for Te, 100 for I, 10−3 for Ba, 10−6 to 10−5 for Pu, 10−6 to 10−5 for Am, and 10−6 for Cm. The observed radioactivity ratios to 137Cs were compared with those obtained by severe accident analysis to assess the validation of the analysis.


2016 ◽  
Vol 2 (4) ◽  
Author(s):  
Payot Frédéric ◽  
Seiler Jean-Marie

In the field of severe accident, the description of corium progression events is mainly carried out using integral calculation codes. However, these tools are usually based on bounding assumptions because of the high complexity of phenomena. The limitations associated with bounding situations [1] (e.g., steady-state situations and instantaneous whole core relocation in the lower head) led CEA to develop an alternative approach to improve the phenomenological description of the melt progression. The methodology used to describe the corium progression was designed to cover the accidental situations from the core meltdown to the molten core–concrete interaction (MCCI). This phenomenological approach is based on the available data (including learnings from TMI-2) on physical models and knowledge about the corium behavior. It provides emerging trends and best-estimate intermediate situations. As different phenomena are unknown, but strongly coupled, uncertainties at large scale for the reactor application must be taken into account. Furthermore, the analysis is complicated by the fact that these configurations are most probably three-dimensional (3D), all the more so because 3D effects are expected to have significant consequences for the corium progression and the resulting vessel failure. Such an analysis of the in-vessel melt progression was carried out for the Unit 1 of the Fukushima Dai-ichi Nuclear Power Plant. The core uncovering kinetics governs the core degradation and impacts the appearance of the first molten corium inside the core. The initial conditions used to carry out this analysis are based on the available results derived from codes such as the MELCOR calculation code [2]. The core degradation could then follow different ways: (1) Axial progression of the debris and the molten fuel through the lower support plate, or (2) lateral progression of the molten fuel through the shroud. On the basis of the Bali program results [3] and the TMI-2 accident observations [4], this work is focused on the consequences of a lateral melt progression (not excluding an axial progression through the support plate). Analysis of the events and the associated time sequence will be detailed. Besides, this analysis identifies some number of issues. Random calculations and statistical analysis of the results could be performed with calculation codes such as LEONAR–PROCOR codes [5]. This work was presented in the frame of the OECD/NEA/CSNI Benchmark Study of the Accident at the Fukushima Dai-ichi Nuclear Power Station (BSAF) project [6]. During the years of 2012 and 2014, the purpose of this project was both to study, by means of severe accident codes, the Fukushima accident in the three crippled units, until 6 days from the reactor shutdown, and to give information about, in particular, the location and composition of core debris.


2018 ◽  
Vol 4 (3) ◽  
Author(s):  
Kevin Fernández-Cosials ◽  
Gonzalo Jiménez ◽  
César Serrano ◽  
Luisa Ibáñez ◽  
Ángel Peinado

During a severe accident (SA) in a nuclear power plant (NPP), there are several challenges that need to be faced. To coup with a containment overpressure, the venting action will lower the pressure but it will release radioactivity to the environment. In order to reduce the radioactivity released, a filtered containment venting system (FCVS) can be used to retain iodine and aerosols radioactive releases coming from the containment atmosphere. However, during a SA, large quantities of hydrogen can also be generated. Hydrogen reacts violently with oxygen and its combustion could impair systems, components, or structures. For this reason, to protect the integrity of the FCVS against hydrogen explosions, an inertization system is found necessary. This system should create an inert atmosphere previous to any containment venting that impedes the contact of hydrogen and oxygen. In this paper, the inertization system for Cofrentes NPP is presented. It consists of a nitrogen injection located in three different points. A computational model of the FCVS as well as the inertization system has been created. The results show that if the nitrogen sweeps and the containment venting are properly synchronized, the hydrogen risk could be reduced to a minimum and therefore, the integrity of the FCVS would be preserved.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kwame Gyamfi ◽  
Sylvester Attakorah Birikorang ◽  
Emmanuel Ampomah-Amoako ◽  
John Justice Fletcher

Abstract Atmospheric dispersion modeling and radiation dose calculation have been performed for a generic 1000 MW water-water energy reactor (VVER-1000) assuming a hypothetical loss of coolant accident (LOCA). Atmospheric dispersion code, International Radiological Assessment System (InterRAS), was employed to estimate the radiological consequences of a severe accident at a proposed nuclear power plant (NPP) site. The total effective dose equivalent (TEDE) and the ground deposition were calculated for various atmospheric stability classes, A to F, with the site-specific averaged meteorological conditions. From the analysis, 3.7×10−1 Sv was estimated as the maximum TEDE corresponding to a downwind distance of 0.1 km within the dominating atmospheric stability class (class A) of the proposed site. The intervention distance for evacuation (50 mSv) and sheltering (10 mSv) were estimated for different stability classes at different distances. The intervention area for evacuation ended at 0.5 km and that for sheltering at 1.5 km. The results from the study show that designated area for public occupancy will not be affected since the estimated doses were below the annual regulatory limits of 1 mSv.


Author(s):  
Frank Kretzschmar

In the case of a severe accident in a nuclear power plant there is a residual risk, that the Reactor Pressure Vessel (RPV) does not withstand the thermal attack of the molten core material, of which the temperature can be about 3000 K. For the analysis of the processes governing melt dispersal and heating up of the containment atmosphere of a nuclear power plant in the case of such an event, it is important to know the time of the onset of gas blowthrough during the melt expulsion through the hole in the bottom of the RPV. In the test facility DISCO-C (Dispersion of Simulant Corium-Cold) at the FZK /6/, experiments were performed to furnish data for modeling Direct Containment Heating (DCH) processes in computer codes that will be used to extrapolate these results to the reactor case. DISCO-C models the RPV, the Reactor Coolant System (RCS), cavity and the annular subcompartments of a large European reactor in a scale 1:18. The liquid type, the initial liquid mass, the type of the driving gas and the size of the hole were varied in these experiments. We present results for the onset of the gas blowthrough that were reached by numerical analysis with the Multiphase-Code SIMMER. We compare the results with the experimental results from the DISCO-C experiments and with analytical correlations, given by other authors.


Author(s):  
Wang Ziguan ◽  
Lu Fang ◽  
Yang Benlin ◽  
Chen Shi ◽  
Hu Lingsheng

Abstract Risk-informed design approaches are comprehensively implemented in the design and verification process of HPR1000 nuclear power plant. Particularly, Level 2 PSA is applied in the optimization of severe accident prevention and mitigation measures to avoid the extravagant redundancy of system configurations. HPR1000 preliminary level 2 PSA practices consider internal events of the reactor in the context of at-power condition. Severe accidents mitigation and prevention system and its impact on the overall large release frequency (LRF) level are evaluated. The results showed that severe accident prevention and mitigation systems, such as fast depressurization system, the cavity injection system and the passive containment heat removal system perform well in reducing LRF and overall risk level of HPR1000 NPP. Bypass events, reactor rapture events, and the containment bottom melt-through induced by MCCI are among the dominant factors of the LRF. The level 2 PSA analysis results indicate that HPR1000 design is reliable with no major weaknesses.


Author(s):  
Wentao Zhu ◽  
Wenjing Li

After Fukushima nuclear power plant accident, severe accident is getting more and more concerns all over the world. In order to mitigate severe accident and improve the safety of nuclear power plant, two different strategies are applied in different plants. One is in-vessel melt retention strategy, and the other is ex-vessel melt retention strategy. Tianwan nuclear power plant is an improved Gen II nuclear power plant and in-vessel melt retention strategy is adopted in the plant. In order to achieve this strategy, cavity injection system is designed for the plant. Probabilistic Safety Analysis is the most commonly used quantitative risk assessment tool for decision-making in selecting the optimal design among alternative options. For this plant, in order to optimize the design of cavity injection system, improve the safety level of nuclear power plant, and meanwhile, improve the engineering implementation and economization, Level 2 PSA was used for this decision-making process. In this paper, the Level 2 PSA for this plant and the application for the design of cavity injection system are introduced.


1985 ◽  
Vol 1 (S1) ◽  
pp. 401-404
Author(s):  
Donald Reid

At 0400 hours on Wednesday, March 28, 1979, an extremely small and initially thought unimportant malfunction occurred at the nuclear power plant at Three Mile Island (TMI). Within a short period of time, that malfunction would turn into an event of momentous impact with repercussions felt over most of the world. The events of that malfunction would cause TMI to be labelled as the worst commercial nuclear incident in history and transform it into the nuclear test tube of the universe. What really happened at Three Mile Island? Thirty-six seconds after 0400 hours, several water pumps stopped functioning in the unit 2 nuclear power plant. In the minutes, hours and days that followed, a series of events—compounded by equipment failure, inappropriate procedures and human errors—escalated into the worst crisis yet experienced by the nation's nuclear power industry. This resulted in the loss of reactor coolant, overheating of the core, damage to the fuel (but probably no melting) and release outside the plant of radioactive gases. Hydrogen has was formed, primarily by the reaction between the zirconium casing that holds the radioactive fuel and steam. There, however, was no danger of the bubble inside the reactor vessel exploding, because of the absence of oxygen within the reactor.


Sign in / Sign up

Export Citation Format

Share Document