Development of Numerical Estimation Method Using Spatial Connection Methodology for Thermal Striping in Upper Plenum of Reactor Vessel of an Advanced Loop-Type Sodium-Cooled Fast Reactor in Japan

Author(s):  
Masaaki Tanaka ◽  
Satoshi Murakami

Thermal striping on the core instrumentation plate (CIP) at the bottom of the upper internal structure (UIS) of an advanced loop-type sodium-cooled fast reactor in Japan (Advanced-SFR) has been numerically investigated. At the top of the core below the CIP, the sodium at high temperature flows out from the fuel subassemblies (FSs) and the sodium at low temperature flows out from the primary control rod (PCR) and backup control rod (BCR) channels, and also the radial blanket fuel subassemblies (RBFSs) at the outer side of the core. In order to predict the thermal striping on the CIP caused by mixing fluids at different temperatures from the FSs, the PCR and the BCR channels, and the RBFSs, a numerical estimation method using a spatial connection methodology between the upper plenum analysis and the local area analysis for the target area has been developed. By using the connection methodology, the numerical simulation considering the influence of the transversal flow in the UIS and the external flow around the UIS in the upper plenum can be performed to improve the accuracy of the estimation results. In this paper, the outline of the spatial connection methodology including data transfer technique from the upper plenum analysis to the local area analysis was described. As a validation process, numerical simulation of the water experiment using the test apparatus named TAFUT which was 1/3-scaled 1/6 partial model of the upper plenum of the Advanced-SFR was performed to confirm applicability of the spatial connection methodology to a practical thermal striping problem. The numerical result of temperature distribution was compared with the measured result in TAFUT experiment. Additionally, mesh sensitivity of the local area analysis model to the numerical results was indicated by using a small and a large area models in order to suggest an appropriate local area analysis model.

Author(s):  
Jun Kobayashi ◽  
Nobuyuki Kimura ◽  
Akira Tobita ◽  
Hideki Kamide ◽  
Osamu Watanabe ◽  
...  

An advanced loop type sodium cooled fast reactor, JSFR, has been investigated in the frame work of Fast Reactor Cycle Technology Development Project (FaCT). As the temperatures difference between the control rod channels and the core fuel subassemblies is around 100 °C, temperature fluctuation due to the fluid mixing at the core outlet may cause high cycle thermal fatigue at the bottom of Upper Internal Structure (UIS). Then, a water experiment was conducted using an 1/3 scale 60 degree sector model. Temperature and its fluctuation intensity distributions around the control rod were measured and an effect of the improved structure against the thermal fatigue was examined.


2021 ◽  
Vol 8 (2) ◽  
pp. 1-9
Author(s):  
Hoai Nam Tran ◽  
Yasuyoshi Kato ◽  
Van Khanh Hoang ◽  
Sy Minh Tuan Hoang

This paper presents the neutronics characteristics of a prototype gas-cooled (supercritical CO2-cooled) fast reactor (GCFR) with minor actinide (MA) loading in the fuel. The GCFR core is designed with a thermal output of 600 MWt as a part of a direct supercritical CO2 (S-CO2) gas turbine cycle. Transmutation of MAs in the GCFR has been investigated for attaining low burnup reactivity swing and reducing long-life radioactive waste. Minor actinides are loaded uniformly in the fuel regions of the core. The burnup reactivity swing is minimized to 0.11% ∆k/kk’ over the cycle length of 10 years when the MA content is 6.0 wt%. The low burnup reactivity swing enables minimization of control rod operation during burnup. The MA transmutation rate is 42.2 kg/yr, which is equivalent to the production rates in 7 LWRs of the same electrical output.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Massimo Sarotto ◽  
Gabriele Firpo ◽  
Anatoly Kochetkov ◽  
Antonin Krása ◽  
Emil Fridman ◽  
...  

Abstract During the EURATOM FP7 project FREYA, a number of experiments were performed in a critical core assembled in the VENUS-F zero-power reactor able to reproduce the ALFRED lead-cooled fast reactor spectrum in a dedicated island. The experiments dealt with the measurements of integral and local neutronic parameters, such as the core criticality, the control rod and the lead void reactivity worth, the axial distributions of fission rates for the nuclides of major interest in a fast spectrum, the spectral indices of important actinides (238U, 239Pu, 237 Np) with respect to 235U. With the main aim to validate the neutronic codes adopted for the ALFRED core design, the VENUS-F core and its characterization measurements were simulated with both deterministic (ERANOS) and stochastic (MCNP, SERPENT) codes, by adopting different nuclear data libraries (JEFF, ENDF/B, JENDL, TENDL). This paper summarizes the main results obtained by highlighting a general agreement between measurements and simulations, with few discrepancies for some parameters that are discussed here. Additionally, a sensitivity and uncertainty analysis was performed with deterministic methods for the core reactivity: it clearly indicates that the small over-criticality estimated by the different codes/libraries resulted to be lower than the uncertainties due to nuclear data.


2015 ◽  
Vol 5 (2) ◽  
pp. 15-25
Author(s):  
Viet Ha Pham Nhu ◽  
Min Jae Lee ◽  
Sunghwan Yun ◽  
Sang Ji Kim

Power regulation systems of fast reactors are based on the signals of excore detectors. The excore detector weighting functions, which establish correspondence between the core power distribution and detector signal, are very useful for detector response analyses, e.g., in rod drop experiments. This paper presents the calculation of the weighting functions for a TRU burner mockup of the Korean Prototype Generation-IV Sodium-cooled Fast Reactor (named BFS-76-1A) using the MCNP5 multi-group adjoint capability. For generation of the weighting functions, all fuel assemblies were considered and each of them was divided into ten horizontal layers. Then the weighting functions for individual fuel assembly horizontal layers, the assembly weighting functions, and the shape annealing functions at RCP (Reactor Critical Point) and at conditions under which a control rod group was fully inserted into the core while other control rods at RCP were determined and evaluated. The results indicate that the weighting functions can be considered relatively insensitive to the control rods position during the rod drop experiments and therefore those weighting values at RCP can be applied to the dynamic rod worth simulation for the BFS-76-1A.


Author(s):  
Alexander Ponomarev ◽  
Konstantin Mikityuk

Abstract In the paper the reactivity characteristics of the core of the large sodium fast reactor Superphenix (SPX) were evaluated and compared with available experimental data. The analysis was performed using the TRACE system code modified for the fast reactor applications. The simplified core model was developed aiming to overcome the lack of detailed information on design and realistic core conditions. Point Kinetics neutronic model with all relevant reactivity feedbacks was used to calculate transient power. The paper focuses on challenging issue of modelling of the transient thermal responses of primary system structural elements resulting in reactivity feedbacks specific to such large fast reactor which cannot be neglected. For these effects, the model was equipped with dedicated heat structures to reproduce important feedbacks due to vessel wall, diagrid, strongback, control rod drive lines thermal expansion. Peculiarly, application of the model was considered for a whole range of core conditions from zero power to 100% nominal. The developed core model allowed reproducing satisfactorily the core reactivity balance between zero power at 180?C and full power conditions. Additionally, the reactivity coefficients k, g, h at three power levels were calculated and satisfactory agreement with experimental measurements was also observed. The study demonstrated feasibility of application of relatively simple model with adjusted parameters for analysis of different conditions of very complex system.


Author(s):  
Akihisa Iwasaki ◽  
Shinichiro Matsubara ◽  
Kazuteru Kawamura ◽  
Hidenori Harada ◽  
Tomohiko Yamamoto

Abstract Core elements of a fast reactor are self-standing on the core support structure and not restrained in the axial direction. When the earthquake occurs, it is necessary to consider vertical behavior and horizontal displacement of the core elements simultaneously. In the core seismic analysis, a three dimensional core vibration behavior was evaluated by considering fluid structure interaction, collision with adjacent core elements and vertical displacement and verified by a series of vibration tests. But the evaluation had a assumption of straightness of each core elements which may be bowed due to thermal expansion and swelling under restraint of the horizontal direction between the upper pad and lower structure (Entrance Nozzle). If the core elements are deformed in its plant operation, they may push each other against its adjacent core elements. The large horizontal interference forces may work to decrease the vertical displacement of the core elements. In this study, to grasp and estimate the behavior under the deformed core elements under the earthquake motion, a three dimensional seismic analysis model consist of all of core elements with consideration of the effect of deformed core elements were prepared, analyzed and verified by hexagonal-matrix tests with 37 core elements and single row mock-up models with 7 core elements. These test results show that the rising displacements decrease with increased deformation and no rising occurs when the deformations exceed a threshold. In this paper, the effect of bending deformation due to thermal expansion and swelling on the rising displacement of the core elements was shown by seismic experiments.


Sign in / Sign up

Export Citation Format

Share Document