Very Early Stage of Elastic-Plastic Spherical Contact Fretting

Author(s):  
Andrey Ovcharenko ◽  
Izhak Etsion

The contact area, friction force and relative displacement evolution at the very early stage of fretting are investigated experimentally. Copper and steel spheres of various diameters are loaded against a hard sapphire flat by a range of normal loads deep into the elastic-plastic regime of deformation. A reciprocating tangential loading is then applied with a maximum loading below the static friction to avoid gross slip. Real-time and in situ direct measurements of the contact area, along with accurate measurements of the friction force and relative displacement, reveal substantial junction growth and energy dissipation mainly in the first loading cycle. The so called “slip amplitude” is found to be attributed to residual tangential plastic deformation rather than to interfacial slip. Elastic shake-down is observed for the 2.5% hardening steel spheres while plastic shake-down is observed in the case of the elastic perfectly plastic copper spheres.

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
A. Ovcharenko ◽  
I. Etsion

The contact area, friction force, and relative displacement evolution at the very early stage of fretting are investigated experimentally. Copper and steel spheres of various diameters are loaded against a hard sapphire flat by a range of normal loads deep into the elastic-plastic regime of deformation. A reciprocating tangential loading is then applied with a maximum loading below the static friction to avoid gross slip. Real-time and in situ direct measurements of the contact area, along with accurate measurements of the friction force and relative displacement, reveal substantial junction growth and energy dissipation mainly in the first loading cycle. The so-called “slip amplitude” is found to be attributed to residual tangential plastic deformation rather than to interfacial slip. Elastic shake-down is observed for the 2.5% hardening steel spheres while plastic shake-down is observed in the case of the elastic perfectly-plastic copper spheres.


2003 ◽  
Vol 125 (3) ◽  
pp. 499-506 ◽  
Author(s):  
Lior Kogut ◽  
Izhak Etsion

A finite element analysis, for an elastic perfectly plastic sphere normally loaded by a rigid flat, is combined with an approximate analytical solution to evaluate the maximum tangential load (static friction) that can be supported by the spherical contact at the inception of sliding. Sliding inception is treated as a failure mechanism based on plastic yield rather than a Coulomb friction law with a certain friction coefficient. Two different failure modes are identified, either on the contact area or below it, depending on the elastic-plastic status of the normal preloading. A limiting normal preload is found above which the contact cannot support any additional tangential load. Simple analytical expressions for an “internal static friction coefficient” are presented for both the elastic and the elastic-plastic regimes.


Author(s):  
Andrey Ovcharenko ◽  
Gregory Halperin ◽  
Izhak Etsion

The elastic-plastic contact between a deformable sphere and a rigid flat during pre-sliding is studied experimentally. Measurements of friction force and contact area are done in real time along with an accurate identification of the instant of sliding inception. The static friction force and relative tangential displacement are investigated over a wide range of normal preloads for several sphere materials and diameters. It is found that at low normal loads the static friction coefficient depends on the normal load in breach of the classical laws of friction. The pre-sliding displacement is found to be less than 5 percent of the contact diameter, and the interface mean shear stress at sliding inception is found to be slightly below the shear strength of the sphere material. Good correlation is found between the present experimental results and a recent theoretical model in the elastic-plastic regime of deformation.


1985 ◽  
Vol 107 (1) ◽  
pp. 13-18 ◽  
Author(s):  
B. V. Kiefer ◽  
P. D. Hilton

Capabilities for the analysis of combined viscous and plastic behavior have been added to an existing finite element computer program for two-dimensional elastic-plastic calculations. This program (PAPSTB) has been formulated for elastic-plastic stress and deformation analyses of two-dimensional and axisymmetric structures. It has the ability to model large strains and large deformations of elastic-perfectly plastic, multi-linear hardening, or power-hardening materials. The program is based on incremental plasticity theory with a von Mises yield criterion. Time dependent behavior has been introduced into the PAPSTB program by adding a viscous strain increment to the elastic and plastic strain increment to form the total strain increment. The viscous calculations presently employ a power-law relationship between the viscous strain rate and the effective stress. The finite element code can be easily modified to handle more complex viscous models. The Newmark method for time integration is used, i.e., an input parameter is included which enables the user to vary the time domain approximation between forward (explicit) and backward (implicit) difference. Automatic time stepping is used to provide for stability in the viscous calculations. It is controlled by an input parameter related to the ratio of the current viscous strain increment to the total strain. The viscoplastic capabilities of the PAPSTB program are verified using the axisymmetric problem of an internally pressurized, thick-walled cylinder. The transient viscoplastic case is analyzed to demonstrate that the elastic-perfectly plastic solution is obtained as a steady-state condition is approached. The influence of varying the time integration parameter for transient viscoplastic calculations is demonstrated. In addition, the effects of time step on solution accuracy are investigated by means of the automatic time stepping algorithm in the program. The approach is then applied to a simple forging problem of cylinder upsetting.


1985 ◽  
Vol 52 (1) ◽  
pp. 75-82 ◽  
Author(s):  
V. Bhargava ◽  
G. T. Hahn ◽  
C. A. Rubin

This paper presents finite element analyses of two-dimensional (plane strain), elastic-plastic, repeated, frictionless rolling contact. The analysis employs the elastic-perfectly plastic, cycle and strain-amplitude-independent material used in the Merwin and Johnson analysis but avoids several assumptions made by these workers. Repeated rolling contacts are simulated by multiple translations of a semielliptical Hertzian pressure distribution. Results at p0/k = 3.5, 4.35, and 5.0 are compared to the Merwin and Johnson prediction. Shakedown is observed at p0/k = 3.5, but the comparisons reveal significant differences in the amount and distribution of residual shear strain and forward flow at p0/k = 4.35 and p0/k = 5.0. The peak incremental, shear strain per cycle for steady state is five times the value calculated by Merwin and Johnson, and the plastic strain cycle is highly nonsymmetric.


2002 ◽  
Vol 12 (9) ◽  
pp. 319-320
Author(s):  
T. Nitta ◽  
H. Haga ◽  
K. Kawabata

We measured the static friction force of agar gel-on-glass plate in water. The static friction force is independent of the apparent contact area between the agar gel and the glass plate. It increases with waiting time, that is, contact duration prior to motion. The static friction force is represented well by a power law of waiting time. The waiting time dependence is different from those of solid-on-solid systems. These results are discussed, based on asperity contact model.


1958 ◽  
Vol 25 (2) ◽  
pp. 239-242
Author(s):  
D. R. Bland ◽  
P. M. Naghdi

Abstract This paper is concerned with a compressible elastic-plastic wedge of an included angle β < π/2 in the state of plane strain. The solution, deduced for an isotropic nonwork-hardening material, employs Tresca’s yield criterion and the associated flow rules. By means of a numerical example the solution is compared with that of an incompressible elastic-plastic wedge in one case (β = π/4) for various positions of the elastic-plastic boundary.


1957 ◽  
Vol 24 (1) ◽  
pp. 98-104
Author(s):  
P. M. Naghdi

Abstract An elastic, perfectly plastic wedge of an incompressible isotropic material in the state of plane strain is considered, where the stress-strain relations of Prandtl-Reuss are employed in the plastic domain. For a wedge (with an included angle β) subjected to a uniform normal pressure on one boundary, the complete solution is obtained which is valid in the range 0 < β < π/2; this latter limitation is due to the character of the initial yield which depends on the magnitude of β. Numerical results for stresses and displacements are given in one case (β = π/4) for various positions of the elastic-plastic boundary.


2001 ◽  
Vol 38 (4) ◽  
pp. 782-795 ◽  
Author(s):  
D T Bergado ◽  
P Voottipruex ◽  
A Srikongsri ◽  
C Teerawattanasuk

The interaction behavior between hexagonal wire mesh and silty sand backfill can be evaluated from pullout tests. The pullout resistance of the hexagonal wire mesh reinforcement consists of two components, namely friction resistance and passive bearing resistance. The friction resistance – relative displacement relationship of a hexagonal wire mesh can be simulated by a linear elastic – perfectly plastic model. The passive bearing resistance of an individual bearing member can be modelled by a hyperbolic function. The friction resistances for galvanized and PVC-coated hexagonal wire mesh were 25 and 21%, respectively, of the total pullout resistance. A new analytical model for predicting the pullout resistance of hexagonal wire mesh reinforcement has been proposed. The proposed solution can estimate the maximum pullout force at different reinforcement levels from observed horizontal movement of a hexagonal wire mesh reinforcement.Key words: hexagonal wire mesh, necking phenomena, bearing resistance, analytical model, pullout box, bearing resistance.


Author(s):  
Ralf Peek ◽  
Heedo Yun

Analytical solutions for the lateral buckling of pipelines exist for the case when the pipe material remains in the linearly elastic range. However for truly high temperatures and/or heavier flowlines, plastic deformation cannot be excluded. One then has to resort to finite element analyses, as no analytical solutions are available. This paper does not provide such an analytical solution, but it does show that if the finite element solution has been calculated once, then that solution can be scaled so that it applies for any other values of the design parameters. Thus the finite element solution need only be calculated once and for all. Thereafter, other solutions can be calculated by scaling the finite element solution using simple analytical formulas. However, the shape of the moment-curvature relation must not change. That is, the moment-curvature relation must be a scaled version of the moment-curvature relation for the reference problem, where different scale factors may be applied to the moment and curvature. This paper goes beyond standard dimensional analysis (as justified by the Bucklingham Π theorem), to establish a stronger scalability result, and uses it to develop simple formulas for the lateral buckling of any pipeline made of elastic-plastic material. The paper includes the derivation of the scaling result, the application procedure, the reference solution for an elastic-perfectly plastic pipe, and an example to illustrate how this reference solution can be used to calculate the lateral buckling response for any elastic-perfectly plastic pipe.


Sign in / Sign up

Export Citation Format

Share Document