Surface Film Formation and Hydrogen Permeation of Austenitic Stainless Steel Under High Pressure Hydrogen

Author(s):  
Hiroyoshi Tanaka ◽  
Yoshinori Sawae ◽  
Joichi Sugimura

This paper describes a study on surface film formation and hydrogen permeation at stainless steel surfaces under high pressure hydrogen. In order to investigate hydrogen permeation into the steels, exposure tests in high pressure hydrogen were conducted with AISI 316 and 316L stainless steel specimens. To determine the concentration of hydrogen in the specimens and characteristics of surface oxide layer, desorption spectra of hydrogen and water were determined with TDS. In addition, XPS analyses were performed to identify chemical composition of the exposed surfaces. It was found that the permeation of hydrogen through the steel surface was related to the desorption behavior of water, which could be originated from the surface film formed during the exposure to high pressure gas.

Author(s):  
Yoshinori Sawae ◽  
Kanao Fukuda ◽  
Eiichi Miyakoshi ◽  
Shunichiro Doi ◽  
Hideki Watanabe ◽  
...  

Bearings and seals used in fuel cell vehicles and related hydrogen infrastructures are operating in pressurized gaseous hydrogen. However, there is a paucity of available data about the friction and wear behavior of materials in high pressure hydrogen gas. In this study, authors developed a pin-on-disk type apparatus enclosed in a high pressure vessel and characterized tribological behavior of polymeric sealing materials, such as polytetrafluoroethylene (PTFE) based composites, in gaseous hydrogen pressurized up to 40 MPa. As a result, the friction coefficient between graphite filled PTFE and austenitic stainless steel in 40 MPa hydrogen gas became lower compared with the friction in helium gas at the same pressure. The chemical composition of worn surfaces was analyzed by using X-ray photoelectron spectrometer (XPS) after the wear test. Results of the chemical analysis indicated that there were several differences in chemical compositions of polymer transfer film formed on the stainless disk surface between high pressure hydrogen environment and high pressure helium environment. In addition, the reduction of surface oxide layer of stainless steel was more significant in high pressure hydrogen gas. These particular effects of the pressurized hydrogen gas on the chemical condition of sliding surfaces might be responsible for the tribological characteristics in the high pressure hydrogen environment.


Author(s):  
Hideki Nakagawa

Practical application of fuel cell vehicle has started in the world, and high-pressure hydrogen tanks are currently considered to be the mainstream hydrogen storage system for commercially implemented fuel cell vehicle. Application of metallic materials to the components of high-pressure hydrogen storage system: hydrogen tanks, valves, measuring instructions and so on, have been discussed. In this work, tensile properties of four types of stainless steels were evaluated in 45MPa (6527psig) and 75MPa (10878psig) high-pressure gaseous hydrogen at a slow strain rate of 3×10−6 s−1 at ambient temperature. Type 316L (UNS S31603) stainless steel hardly showed ductility loss in gaseous hydrogen, since it had stable austenitic structure. On the other hand, Type 304 (UNS S30400) metastable austenitic stainless steel showed remarkable ductility loss in gaseous hydrogen, which was caused by the hydrogen embrittlement of strain induced martensitic phase. Likewise, Type 205 (UNS S20500) nitrogen-strengthened austenitic stainless steel showed remarkable ductility loss in gaseous hydrogen, though it had stable austenitic structure in the same manner as Type 316L. The ductility loss of Type 205 was due to the hydrogen embrittlement of austenitic phase resulting from the formation of planar dislocation array. Furthermore, Type 329J4L (UNS S31260) duplex stainless steel showed extreme ductility loss in gaseous hydrogen, which was caused by the hydrogen embrittlement of ferritic phase.


2016 ◽  
Vol 657 ◽  
pp. 215-223 ◽  
Author(s):  
Jenő Gubicza ◽  
Moustafa El-Tahawy ◽  
Yi Huang ◽  
Hyelim Choi ◽  
Heeman Choe ◽  
...  

2020 ◽  
Vol 382 ◽  
pp. 125175 ◽  
Author(s):  
L.B. Coelho ◽  
S. Kossman ◽  
A. Mejias ◽  
X. Noirfalise ◽  
A. Montagne ◽  
...  

Author(s):  
Kazuhisa Matsumoto ◽  
Shinichi Ohmiya ◽  
Hideki Fujii ◽  
Masaharu Hatano

To confirm a compatibility of a newly developed high strength stainless steel “NSSC STH®2” for hydrogen related applications, tensile and fatigue crack growth properties were evaluated in high pressure hydrogen gas up to 90MPa. At temperatures between −40 and 85°C, no conspicuous deterioration of tensile properties including ductility was observed even in 90 MPa hydrogen gas at −40°C while strength of STH®2 was higher than SUS316L. Although a slight drop of reduction of area was recognized in one specimen tested in 90 MPa hydrogen gas at −40°C, caused by the segregation of Mn, Ni and Cu in the laboratory manufactured 15mm-thick plate, it was considerably improved in the large mill products having less segregation. Fatigue crack growth rates of STH®2 in high pressure hydrogen gas were almost the same as that of SUS316L in air. Although fatigue crack growth rate in air was considerably decelerated and lower than that in hydrogen gas at lower ΔK region, this was probably caused by crack closure brought by oxide debris formed on the fracture surfaces near the crack tip by the strong contact of the fracture surfaces after the fatigue crack was propagated. By taking the obtained results into account, it is concluded that NSSC STH®2 has excellent properties in high pressure hydrogen gas in addition to high strength compared with standard JIS SUS316L.


Sign in / Sign up

Export Citation Format

Share Document