Size Scale Dependence of Deformation in NiTi

2000 ◽  
Author(s):  
Ken Gall ◽  
Martin L. Dunn ◽  
Yiping Liu ◽  
Paul Labossiere ◽  
Huseyin Sehitoglu ◽  
...  

Abstract Recent work [1-5] has suggested that a lucrative future for shape memory materials such as NiTi is in the area of micro-electro-mechanical systems (MEMS). To design MEMS and predict their behavior during service, we must have quantitative information on the mechanical properties of scaled down NiTi materials. One way of obtaining the mechanical properties of scaled down materials is with unique MEMS testing fixtures. Although this approach is favorably analogous to macroscopic testing techniques it is not always feasible owing to the difficulty of handling the microscopic samples. Many smart material actuators are deposited thin films [1-5] and separating the films from their substrate and subsequently testing them is beyond our current MEMS processing and handling tools. An alternative method to quantify the properties of microscale materials is through micro-indentation, which has been previously applied to NiTi polycrystals [6]. Although micro-indentation is simple to accomplish, interpretation and quantification of the results is not as straightforward, as will be demonstrated in this work.

2009 ◽  
pp. 489-490
Author(s):  
Norm V. Gitis ◽  
Suresh Kuiry ◽  
Ilja Hermann ◽  
Jun Xiao

2003 ◽  
Vol 806 ◽  
Author(s):  
Senthil N Sambandam ◽  
Shekhar Bhansali ◽  
Venkat R. Bhethanabotla

ABSTRACTMicrostructures of multi-component amorphous metallic glass alloys are becoming increasingly important due to their excellent mechanical properties and low coefficient of friction. In this work, thin films of Zr-Ti-Cu-Ni-Be have been deposited by DC magnetron sputtering in view of exploring their potential technological applications in fields such as Micro Electro Mechanical Systems (MEMS). Their structure, composition, surface morphology, mechanical properties viz., hardness and Young's modulus were analyzed using X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Nanoindentation. Influence of the deposition parameters of sputtering pressure and power upon the composition and surface morphology of these films has been evidenced by SEM, and AFM analysis, showing that such a process yields very smooth films with target composition at low sputtering pressures. These studies are useful in understanding the multicomponent sputtering process.


1995 ◽  
Vol 391 ◽  
Author(s):  
Mansour Moinpour ◽  
Farhad Moghadam ◽  
Byron Williams

AbstractA selective range of hydrated silicon oxynitride thin films (SixOyNz:H) have been characterized in terms of their stress, hardness, and modulus in order to mechanically qualify them for use as an encapsulation layer for memory devices (e.g., Flash and EPROM memories). These films are analyzed by RBS and HFS for stoichiometry. The films exhibited stress values between 1.86 x 109 to -3.54 x 109 dyne/cm2 and showed a linear correlation with the hydride ratio (N-H/Si-H). An Ultra Micro-Indentation System (UMIS) measured hardness values between 10.5 GPa to 16.2 GPa while the elastic modulus varied between 119.1 to 141.2 GPa. The monatomic increase of modulus with hardness is attributed to increased amounts of nitrogen and nitrogen hydride bonding in the silicon oxynitride samples.


Author(s):  
Norm Gitis ◽  
Ilja Hermann ◽  
Suresh Kuiry ◽  
Vishal Khosla

Experimental comparison of common nano and micro scales for hardness evaluation has been performed on metal samples and discussed in details. Instrumented indentation was found advantageous in both repeatability and a number of measured parameters over classical hardness methods for metals, while sclerometry was advantageous for ultra-thin films.


Sign in / Sign up

Export Citation Format

Share Document