Block Cycle Fatigue Life Simulation and Correlation With Test for an Automotive Hood Latch-Supporting Component

Author(s):  
Gene Y. Liao

This paper describes the durability analysis procedure and fatigue life simulation of an automotive hood latch-supporting component under block cycle loads. The first step is to apply linear stress analysis to identify the regions with high possibility of failure. The bent cove section of the latch support and the upper bolt-edge on a tie bar connecting to the latch support are determined as the critical regions. The strain-life/signed von Mises stress approach is then used to perform the fatigue analysis at these critical regions. The predicted fatigue life is about 3 times of the experimental one. However, the experiment shows that a crack appears exactly at the bent cove section of the latch support as simulation predicted. This project also serves as a case study to the students in predicting fatigue failure of a real industrial part.

Author(s):  
Ashish Bawkar

This work aims towards the design and optimization of the drive shaft as there is increasing demand for weight reduction in an automobile vehicle. The drive shaft is basically a torque transmitting element which transmit the torque from the differential gearbox to the respective wheels. In general, the drive shafts are subjected to fluctuating loads as the torque requirement changes according to the road conditions. Due to this, the drive shaft should be designed considering fatigue failure. The Maruti Suzuki Ertiga model is chosen for design and optimization of the drive shaft. For the fatigue life predicting of the drive shaft, the S-N curve approach is used. Furthermore, the inner diameter of the shaft is varied to obtain the optimized diameter of a hollow shaft which can withstand these fluctuating loads without failure. Along with fatigue life prediction, the natural frequency of the hollow shaft is also calculated. Furthermore, the parametric analysis is carried out of fatigue FOS, Von mises stress, weight and natural frequency of the shaft by varying the diameter ratio of the hollow shaft, and the nature of variation of these parameters are plotted in their respective graphs. The design is validated by performing FEA analysis for each case of a hollow shaft using Ansys software. Finally, from the FEA analysis we conclude that the optimized dimensions of the hollow drive shaft are safe.


2011 ◽  
Vol 383-390 ◽  
pp. 5894-5898 ◽  
Author(s):  
Su Hong Liu ◽  
Fang Li

The stabilizer anti-roll bar can prevent the vehicle from rollover, so it is important to get the mechanical properties of it. To achieve it, the finite element technology is chosen and the parametric model was built in the first place. The von Mises stress distribution, reliability and the sensitivity were obtained after being analyzed respectively. Based on these, the fatigue life was estimated finally. The fatigue analysis results were contrasted with the life requirements of stabilizer bar’s endurance test.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Rizqi Ilmal Yaqin ◽  
Angger Bagus Prasetiyo ◽  
Pritiansyah Pritiansyah ◽  
Muhammad Haritsah Amrullah ◽  
Binsar Maruli Tua Pakpahan

Propeller is part of a key component in fishing boat propulsion. Propeller can provide momentum to the fluid which can be a thrust on the ship. However, The failure of the propeller found prematurely. The failure of the propeller maybe because of overload on the propeller model so the fatigue life of the propeller becomes low. On the other hand, the rapid development of technology can simulate a design model to look for failures that occur. Finite Element Analysis is one of the designer solutions to determine the age of failure of a model and failure-prone areas in a model. This study uses propeller model data from fishing boat with engine 24HP in Dumai City TPI that always fail prematurely. The material used is copper alloy. While the drawing model uses Autodesk Inventor and Finite Element Analysis simulation using ANSYS R17.2 software with the number of model nodes is 51108 and the number of elements of the model is 26268. The results obtained from this study are Von Mises stress on the simulation model that is equal to 613.33 MPa to 0.01164 MPa. While the deformation value due to the effect of loading on the model is 5,3657 mm to 0 mm. These results affect the age of fatigue (fatigue life) on the model with the highest value 109 and the lowest 0. The results of the fatigue life value on the model affect the results of the level of damage and the safety number of the model with successive values of 1032 to 1 and 15 to 0.32446. The conclusion of the result is the propeller will fail prematurely.


2019 ◽  
Vol 16 (03) ◽  
pp. 1842006 ◽  
Author(s):  
Xinyang Cui ◽  
Qingshuai Ren ◽  
Gaoyang Li ◽  
Zihao Li ◽  
Aike Qiao

The stents’ adaptability and safety in realistic and idealized stenotic coronary model were compared to investigate the influence of artery geometry parameter on stent fatigue life. The stents’ fatigue resistance ability was calculated using Goodman diagram, and the cycle to failure, the fatigue life, and the fatigue safety factor (FSF) were analyzed. Although the peak top of the von Mises stress was located at the bending area of crowns, the stress distributions were different in the two models. Considering the safety and accuracy, it is necessary to use a realistic geometric model to calculate the stent fatigue performance.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8385
Author(s):  
Dimitrios Koulocheris ◽  
Clio Vossou

The design and construction of tanks used for the carriage of dangerous liquid materials fall within strict standards (i.e., EN13094:2015, R111). According to these standards, their supporting structures (Ss), used for the mounting of the tank on the freight vehicle, need to be able to sustain the developed stresses. Optimizing the number of supporting structures can lead to more efficient tank designs that allow the tank to transport more liquid material and need less time to be manufactured. In the present paper, the effect of the reduction of the number of supporting structures in (a) the structural integrity of the tank construction, (b) its dynamic behavior and (c) the load-sharing of the tank to the axles of the freight vehicle is investigated using the finite element (FE) method. As a case study a box-shaped tank mounted on a four-axle freight vehicle with a technical permissible maximum laden mass of 35 tn, five Ss are used. Four FE models with a decreasing number of Ss were built in ANSYS® 2020R1 CAE Software and their structural integrity was investigated. For each design, a feasible design was developed and evaluated in terms of structural integrity, dynamic behavior and axle load distribution. The results of the FE analysis were reviewed in terms of maximum equivalent Von Mises stress and stress developed on the welding areas. Additionally, the axle-load sharing was qualitatively assessed for all feasible designs. The main outcome of this work is that, overall, the use of two Ss leads to a more efficient design in terms of the manufacturing and the mounting of the tank construction on the vehicle and on a more efficient freight vehicle. More specifically, the reduction of the number of Ss from five to two lead to reduction of the tank tare weight by 9.6% with lower eigenfrequencies.


2014 ◽  
Vol 592-594 ◽  
pp. 1104-1108 ◽  
Author(s):  
Swapnil Vitthal Kumbhar ◽  
Vilas Kulkarni ◽  
R.M. Tayade

Cyclic thermal loading causes cyclic thermal stress and thermal fatigue in the component. The goal of this paper is to characterize the thermal fatigue behavior of after-treatment (AT) device, i.e. Exhaust Gas Processor (EGP) and prediction of crack initiation cycles. The paper contains transient thermal analysis to map temperature on EGP model. By taking temperature distribution as input, Elasto-plastic structural analysis is done. Based on stress-strain data and fatigue material property, crack initiation cycles are estimated. For low cycle fatigue analysis, strain based approach, i.e. Brown-Miller Criteria with Morrow mean stress correction factor [1] is used. The von-Mises stress and crack initiation cycles are investigated and S-N curve and Ɛ-N curve are compared with standard graphs.


2013 ◽  
Vol 423-426 ◽  
pp. 1501-1505 ◽  
Author(s):  
Teng Han ◽  
Xiao Qi He ◽  
Yun Fei En

Finite element simulation method of random vibration analysis was used for hermetically metal sealing. According to the results of the random vibration analysis and the theory of fatigue fracture mechanics, the hermetically metal sealing on the PCB plate cracking damage mechanism was analyzed. The danger point of the Von Mises stress was obtained, and the Von Mises stress - time history data was accessed through inverse Fourier transformation. And rain flow count method was used to calculate Von Mises stress-time history data of cycle count. The linear cumulative damage theory and the material S-N curve were used to calculate the fatigue life of Hermetically metal sealing.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Xiao-Liang Yan ◽  
Xiao-Li Wang ◽  
Yu-Yan Zhang

The numerical studies on the influences of surface parameters skewness and kurtosis on tribological characteristics under mixed elastohydrodynamic lubrication (mixed EHL) conditions are extended to fatigue life. Non-Gaussian rough surfaces are generated numerically with given autocorrelation function, skewness, and kurtosis. The results show that the maximum pressure increases as the skewness increases, however its variation with kurtosis is closely related to skewness. Similar trends to that of the maximum pressure are observed for the maximum von Mises stress. The fatigue life decreases as the skewness increases, however it undergoes apparent fluctuations with the increase of kurtosis. As the kurtosis increases, the influence of skewness on fatigue life becomes more significant, and vice versa.


2006 ◽  
Vol 324-325 ◽  
pp. 1265-1268
Author(s):  
Byeong Wook Noh ◽  
Sung In Bae ◽  
Kyung Chun Ham

A fatigue analysis program to calculate fatigue lives of mechanical components and structures from FE(Finite Element) results is developed. The useful characteristic of this program is operated under Web environment. So, any designer who design fatigue strength of components and structures can use without other program installation. For the assessment of multi-axial fatigue damage, signed equivalent stress method and critical plane approach have been employed. Each method is compared and the results of Signed von Mises stress method has similar to the results of Smith-Waston-Topper's parameter using critical plane approach. The results were compared with those from commercial program FE-Fatigue6.0 and it was observed that fatigue life and cumulative damage distribution calculated applying same fatigue resistance curve. The results of calculated fatigue life using Web based program agree well with those from FE-Fatigue6.0.


Sign in / Sign up

Export Citation Format

Share Document