An Efficient CFD Model for Air/Particle Saltating Flows

Author(s):  
S. Ji ◽  
A. G. Gerber ◽  
A. C. M. Sousa

The study reports on the development of a computational-fluid-dynamics model is presented suitable for computationally efficient evaluation of particle transport along loose surfaces. These surfaces can be described within the context of an interaction with a two-phase air/particle mixture in a state of combined suspension and saltation. The results suggest an approach for approximating the two-phase system with coupling to a moving surface, along with the inclusion of impact and entrainment fluxes at the surface that is generally extendable to a wide range of particle/surface conditions. The model results are compared to available experimental data on particle concentration profiles along saltating surfaces, and applied to geometry involving complex three-dimensional flow to show the generality of the approach.

Author(s):  
Zhiyuan Ren ◽  
Jianqiang Zhu ◽  
Zhigang Liu ◽  
Xiaowei Yang

The objective of maintaining the cleanliness of the multi-segment disk amplifier in Shenguang-II (SG-II) is to reduce laser-induced damage for optics. The flow field of clean gas, which is used for the transportation of contaminant particles, is a key factor affecting the cleanliness level in the multi-segment disk amplifier. We developed a gas–solid coupling and three-dimensional flow numerical simulation model. The three-dimensional and two-phase flow model is verified by the flow-field smog experiment and the particle concentration measurement experiment with the 130-disk amplifier in SG-II. By optimizing the boundary conditions with the same flow rate, the multi-inlet vector flow scheme can not only effectively reduce the purging time, but also prevent the reverse diffusion of contaminant particles in the multi-segment disk amplifier and the deposition of contaminant particles on the surface of the Nd:glass.


1981 ◽  
Vol 59 (1) ◽  
pp. 127-131 ◽  
Author(s):  
Alan N. Campbell

The properties named in the title have been determined by standard methods. Viscosity, molar volume, and orientation polarisation all indicate abnormalities of the nature of association between the components.The most interesting result is that of surface tension which indicates that, in the case of the binary system triethylamine–water, a surface layer of constant composition is formed over a wide range of total composition. When, by a rise in temperature of two or three degrees, this layer becomes unstable, it splits into two phases of different composition. The surface layer may then be instantaneously reformed and so on. A mechanism for the generation of a two-phase system is thus established. The data for the three-phase, isothermal, system are not so convincing, for reasons that are suggested.


Author(s):  
Feng Jie Zheng ◽  
Fu Zheng Qu ◽  
Xue Guan Song

Reservoir-pipe-valve (RPV) systems are widely used in many industrial process. The pressure in an RPV system plays an important role in the safe operation of the system, especially during the sudden operation such as rapid valve opening/closing. To investigate the pressure especially the pressure fluctuation in an RPV system, a multidimensional and multiscale model combining the method of characteristics (MOC) and computational fluid dynamics (CFD) method is proposed. In the model, the reservoir is modeled by a zero-dimensional virtual point, the pipe is modeled by a one-dimensional MOC, and the valve is modeled by a three-dimensional CFD model. An interface model is used to connect the multidimensional and multiscale model. Based on the model, a transient simulation of the turbulent flow in an RPV system is conducted, in which not only the pressure fluctuation in the pipe but also the detailed pressure distribution in the valve are obtained. The results show that the proposed model is in good agreement with the full CFD model in both large-scale and small-scale spaces. Moreover, the proposed model is more computationally efficient than the CFD model, which provides a feasibility in the analysis of complex RPV system within an affordable computational time.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Feng Jie Zheng ◽  
Chao Yong Zong ◽  
William Dempster ◽  
Fu Zheng Qu ◽  
Xue Guan Song

Reservoir-pipe-valve (RPV) systems are widely used in many industrial processes. The pressure in an RPV system plays an important role in the safe operation of the system, especially during the sudden operations such as rapid valve opening or closing. To investigate the pressure response, with particular interest in the pressure fluctuations in an RPV system, a multidimensional and multiscale model combining the method of characteristics (MOC) and computational fluid dynamics (CFD) method is proposed. In the model, the reservoir is modeled as a zero-dimensional virtual point, the pipe is modeled as a one-dimensional system using the MOC, and the valve is modeled using a three-dimensional CFD model. An interface model is used to connect the multidimensional and multiscale model. Based on the model, a transient simulation of the turbulent flow in an RPV system is conducted in which not only the pressure fluctuation in the pipe but also the detailed pressure distribution in the valve is obtained. The results show that the proposed model is in good agreement when compared with a high fidelity CFD model used to represent both large-scale and small-scale spaces. As expected, the proposed model is significantly more computationally efficient than the CFD model. This demonstrates the feasibility of analyzing complex RPV systems within an affordable computational time.


2015 ◽  
Vol 1737 ◽  
Author(s):  
Cristiano F. Woellner ◽  
Leonardo D. Machado ◽  
Pedro A. S. Autreto ◽  
José A. Freire ◽  
Douglas S. Galvão

ABSTRACTIn this work we use a three-dimensional Pauli master equation to investigate the charge carrier mobility of a two-phase system, which can mimic donor-acceptor and amorphous-crystalline bulk heterojunctions. Our approach can be separated into two parts: the morphology generation and the charge transport modeling in the generated blend. The morphology part is based on a Monte Carlo simulation of binary mixtures (donor/acceptor). The second part is carried out by numerically solving the steady-state Pauli master equation. By taking the energetic disorder of each phase, their energy offset and domain morphology into consideration, we show that the carrier mobility can have a significant different behavior when compared to a one-phase system. When the energy offset is non-zero, we show that the mobility electric field dependence switches from negative to positive at a threshold field proportional to the energy offset. Additionally, the influence of morphology, through the domain size and the interfacial roughness parameters, on the transport was also investigated.


1988 ◽  
Vol 25 (04) ◽  
pp. 253-261
Author(s):  
Michael S. Pantazopoulos

A methodology is proposed to solve the problem of the three-dimensional flow of water sloshing on the deck of a vessel, and to calculate the resulting forces and moments at the center of gravity. The Eulerian equations of motion of the water particle for incompressible inviscid shallow water flow are formulated with respect to a system attached to the oscillating vessel. The system of the nonlinear hyperbolic equations of motion is solved numerically using Glimm's method (random-choice method). Complex flow patterns consisting of oblique bores and "swirling" motions of the water on deck were revealed, for a vessel oscillating in roll and pitch motions, for a wide range of excitation frequencies. Large accumulation of water occurs at the corners while parts of the deck become dry. Significant rolling moments due to sloshing are exerted on the vessel. These must be taken into account when the dynamic response of the vessel is studied.


Author(s):  
Tomoji Takamasa ◽  
Takashi Hibiki

In a thermal system of spacecraft, two-phase flow system now is an excellent alternative to the conventional single-phase system in transporting large amount of thermal energy at a uniform temperature regardless of variations in the heat loads. In addition, two-phase flows exist in a wide range of applications and enabling technologies in space. This report outlines recent progress in the studies of gas-liquid two-phase flows at microgravity conditions, especially for which regarding to interfacial area transport and drift flux.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mohammad Mastiani ◽  
Negar Firoozi ◽  
Nicholas Petrozzi ◽  
Seokju Seo ◽  
Myeongsub Kim

Abstract Biosample encapsulation is a critical step in a wide range of biomedical and bioengineering applications. Aqueous two-phase system (ATPS) droplets have been recently introduced and showed a great promise to the biological separation and encapsulation due to their excellent biocompatibility. This study shows for the first time the passive generation of salt-based ATPS microdroplets and their biocompatibility test. We used two ATPS including polymer/polymer (polyethylene glycol (PEG)/dextran (DEX)) and polymer/salt (PEG/Magnesium sulfate) for droplet generation in a flow-focusing geometry. Droplet morphologies and monodispersity in both systems are studied. The PEG/salt system showed an excellent capability of uniform droplet formation with a wide range of sizes (20–60 μm) which makes it a suitable candidate for encapsulation of biological samples. Therefore, we examined the potential application of the PEG/salt system for encapsulating human umbilical vein endothelial cells (HUVECs). A cell viability test was conducted on MgSO4 solutions at various concentrations and our results showed an adequate cell survival. The findings of this research suggest that the polymer/salt ATPS could be a biocompatible all-aqueous platform for cell encapsulation.


2013 ◽  
Vol 388 ◽  
pp. 246-250 ◽  
Author(s):  
Mostafa Khaleghi ◽  
Mazlan A. Wahid ◽  
Mohsin M. Seis ◽  
Aminuddin Saat

In the current study computational and experimental investigations of a turbulent asymmetric vortex flame is presented. The three dimensional flow fields have been described using a computational methodology that impalements the kε turbulence model. The computational model is validated for isothermal flow. Moreover, the visible flame structure was captured by direct photography at a wide range of equivalence ratios in order to emphasize the exceptional stability of such flame. The mechanism of flame stability and interaction with the forced vortex field is preliminarily discussed. Finally, the basic characteristics of the asymmetric vortex flames are concluded.


2006 ◽  
Vol 162 (2) ◽  
pp. 992-1002 ◽  
Author(s):  
Valeri A. Danilov ◽  
Jongkoo Lim ◽  
Il Moon ◽  
Hyuk Chang

Sign in / Sign up

Export Citation Format

Share Document