Rough Surface Effects on Film Cooling of the Suction Side Surface of a Turbine Vane

Author(s):  
David G. Bogard ◽  
Daniel Snook ◽  
Atul Kohli

In-service turbine airfoils generally have surface roughness much greater than new airfoils due to deposition, erosion, and spallation. This surface roughness has the effects of promoting early transition and increasing surface friction and heat transfer rates. When film cooling is used on the airfoil, the surface roughness affects film cooling performance by changing the approach boundary layer flow, and by increasing the turbulent mixing downstream of coolant injection. Previous studies of surface roughness effects on film cooling performance have used flat surface wind tunnel facilities. The present study was unique in using a simulated vane test facility. Hence it is the first study of surface roughness effects on film cooling of a highly curved surface. In our experiments, effects of roughness upstream and downstream of coolant injection were studied. Combined effects of leading edge showerhead injection and high mainstream turbulence levels were also investigated. In this study, determination of the effects on film cooling performance was limited to measurements of adiabatic effectiveness. Each configuration was tested over a range of blowing ratios and with a density ratio of 1.6. In each case roughness caused a significant degradation in adiabatic effectiveness. Roughness was observed to have a much greater effect on adiabatic effectiveness on the vane geometry than previous studies had observed using flat surfaces.

Author(s):  
Marcia I. Ethridge ◽  
J. Michael Cutbirth ◽  
David G. Bogard

An experimental study was conducted to investigate the film cooling performance on the suction side of a first stage turbine vane. Tests were conducted on a nine times scale vane model at density ratios of DR = 1.1 and 1.6 over a range of blowing conditions, 0.2 ≤ M ≤ 1.5 and 0.05 ≤ I ≤ 1.2. Two different mainstream turbulence intensity levels, Tu∞ = 0.5% and 20%, were also investigated. The row of coolant holes studied was located in a position of both strong curvature and strong favorable pressure gradient. In addition, its performance was isolated by blocking the leading edge showerhead coolant holes. Adiabatic effectiveness measurements were made using an infrared camera to map the surface temperature distribution. The results indicate that film cooling performance was greatly enhanced over holes with a similar 50° injection angle on a flat plate. Overall, adiabatic effectiveness scaled with mass flux ratio for low blowing conditions and with momentum flux ratio for high blowing conditions. However, for M < 0.5 there was a higher rate of decay for the low density ratio data. High mainstream turbulence had little effect at low blowing ratios, but degraded performance at higher blowing ratios.


2000 ◽  
Vol 123 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Marcia I. Ethridge ◽  
J. Michael Cutbirth ◽  
David G. Bogard

An experimental study was conducted to investigate the film cooling performance on the suction side of a first-stage turbine vane. Tests were conducted on a nine times scale vane model at density ratios of DR=1.1 and 1.6 over a range of blowing conditions, 0.2⩽M⩽1.5 and 0.05⩽I⩽1.2. Two different mainstream turbulence intensity levels, Tu∞=0.5 and 20 percent, were also investigated. The row of coolant holes studied was located in a position of both strong curvature and strong favorable pressure gradient. In addition, its performance was isolated by blocking the leading edge showerhead coolant holes. Adiabatic effectiveness measurements were made using an infrared camera to map the surface temperature distribution. The results indicate that film cooling performance was greatly enhanced over holes with a similar 50 deg injection angle on a flat plate. Overall, adiabatic effectiveness scaled with mass flux ratio for low blowing conditions and with momentum flux ratio for high blowing conditions. However, for M<0.5, there was a higher rate of decay for the low density ratio data. High mainstream turbulence had little effect at low blowing ratios, but degraded performance at higher blowing ratios.


2021 ◽  
pp. 1-24
Author(s):  
Zhigang LI ◽  
Bo Bai ◽  
Jun Li ◽  
Shuo Mao ◽  
Wing Ng ◽  
...  

Abstract Detailed experimental and numerical studies on endwall heat transfer and cooling performance with coolant injection flow through upstream discrete holes is presented in this paper. High resolution heat transfer coefficient (HTC) and adiabatic film cooling effectiveness values were measured using a transient infrared thermography technique on an axisymmetric contoured endwall. The tests were performed in a transonic linear cascade blow-down wind tunnel facility. Conditions were representative of a land-based power generation turbine with exit Mach number of 0.85 corresponding to exit Reynolds number of 1.5 × 106, based on exit condition and axial chord length. A high turbulence level of 16% with an integral length scale of 3.6%P was generated using inlet turbulence grid to reproduce the typical turbulence conditions in real turbine. Low temperature air was used to simulate the typical coolant-to-mainstream condition by controlling two parameters of the upstream coolant injection flow: mass flow rate to determine the coolant-to-mainstream blowing ratio (BR = 2.5, 3.5), and gas temperature to determine the density ratio (DR = 1.2). To highlight the interactions between the upstream coolant flow and the passage secondary flow combined with the influence on the endwall heat transfer and cooling performance, a comparison of CFD predictions to experimental results was performed by solving steady-state Reynolds-Averaged Navier-Stokes (RANS) using the commercial CFD solver ANSYS Fluent V.15.


Author(s):  
Ross Johnson ◽  
Jonathan Maikell ◽  
David Bogard ◽  
Justin Piggush ◽  
Atul Kohli ◽  
...  

When a turbine blade passes through wakes from upstream vanes it is subjected to an oscillation of the direction of the approach flow resulting in the oscillation of the position of the stagnation line on the leading edge of the blade. In this study an experimental facility was developed that induced a similar oscillation of the stagnation line position on a simulated turbine blade leading edge. The overall effectiveness was evaluated at various blowing ratios and stagnation line oscillation frequencies. The location of the stagnation line on the leading edge was oscillated to simulate a change in angle of attack between α = ± 5° at a range of frequencies from 2 to 20 Hz. These frequencies were chosen based on matching a range of Strouhal numbers typically seen in an engine due to oscillations caused by passing wakes. The blowing ratio was varied between M = 1, M = 2, and M = 3. These experiments were carried out at a density ratio of DR = 1.5 and mainstream turbulence levels of Tu ≈ 6%. The leading edge model was made of high conductivity epoxy in order to match the Biot number of an actual engine airfoil. Results of these tests showed that the film cooling performance with an oscillating stagnation line was degraded by as much as 25% compared to the performance of a steady flow with the stagnation line aligned with the row of holes at the leading edge.


2021 ◽  
Author(s):  
Jacob D. Moore ◽  
Christopher C. Easterby ◽  
David G. Bogard

Abstract The high heat loads at the leading-edge regions of turbine vanes and blades necessitate the most robust thermal protection, typically accomplished via a dense array of film cooling holes, nicknamed the “showerhead.” Although research has shown that film cooling using shaped holes provides more reliable thermal protection than that using cylindrical holes, the effects on cooling performance from varying the geometric details of the shaped hole design are not well characterized. In this study, adiabatic effectiveness and off-the-wall thermal field measurements were conducted for two shaped hole geometries designed as successors to a baseline hole geometry presented in a previous study. One geometry with a 40% increase in area ratio exhibited only a marginal improvement in adiabatic effectiveness (∼10%). A second design with a 12° forward and lateral expansion angle with a breakout area 40% larger performed marginally worse than its matched area ratio counterpart (∼15% lower), suggesting a negative sensitivity to breakout area. Such changes in performance for different shaped hole designs were small compared to the boost in performance gained by switching from a cylindrical hole to a shaped hole, which suggests cooling performance is insensitive to specific shaped hole details provided the exterior coolant flow is well-attached.


Author(s):  
Donald L. Schmidt ◽  
David G. Bogard

A flat plate test section was used to study how high free-stream turbulence with large turbulence length scales, representative of the turbine environment, affect the film cooling adiabatic effectiveness and heat transfer coefficient for a round hole film cooling geometry. This study also examined cooling performance with combined high free-stream turbulence and a rough surface which simulated the roughness representative of an in-service turbine. The injection was from a single row of film cooling holes with injection angle of 30°. The density ratio of the injectant to the mainstream was 2.0 for the adiabatic effectiveness tests, and 1.0 for the heat transfer coefficient tests. Streamwise and lateral distributions of adiabatic effectiveness and heat transfer coefficients were obtained at locations from 2 to 90 hole diameters downstream. At small to moderate momentum flux ratios, which would normally be considered optimum blowing conditions, high free-stream turbulence dramatically decreased adiabatic effectiveness. However, at large momentum flux ratios, conditions for which the film cooling jet would normally be detached, high free-stream turbulence caused an increase in adiabatic effectiveness. The combination of high free-stream turbulence with surface roughness resulted in an increase in adiabatic effectiveness relative to the smooth wall with high free-stream turbulence. Heat transfer rates were relatively unaffected by a film cooling injection. The key result from this study was a substantial increase in the momentum flux ratios for maximum film cooling performance which occurred for high free-stream turbulence and surface roughness conditions which are more representative of actual turbine conditions.


Author(s):  
K.-S. Kim ◽  
Youn J. Kim ◽  
S.-M. Kim

To enhance the film cooling performance in the vicinity of the turbine blade leading edge, the flow characteristics of the film-cooled turbine blade have been investigated using a cylindrical body model. The inclination of the cooling holes is along the radius of the cylindrical wall and 20 deg relative to the spanwise direction. Mainstream Reynolds number based on the cylinder diameter was 1.01×105 and 0.69×105, and the mainstream turbulence intensities were about 0.2% in both Reynolds numbers. CO2 was used as coolant to simulate the effect of density ratio of coolant-to-mainstream. Furthermore, the effect of coolant flow rates was studied for various blowing ratios of 0.4, 0.7, 1.1, and 1.4, respectively. In experiment, spatially-resolved temperature distributions along the cylindrical body surface were visualized using infrared thermography (IRT) in conjunction with thermocouples, digital image processing, and in situ calibration procedures. This comparison shows the results generated to be reasonable and physically meaningful. The film cooling effectiveness of current measurement (0.29 mm × 0.33 min per pixel) presents high spatial and temperature resolutions compared to other studies. Results show that the blowing ratio has a strong effect on film cooling effectiveness and the coolant trajectory is sensitive to the blowing ratio. The local spanwise-averaged effectiveness can be improved by locating the first-row holes near the second-row holes.


Author(s):  
H. Abdeh ◽  
G. Barigozzi ◽  
S. Ravelli ◽  
S. Rouina

Abstract In this study a parametric analysis of the thermal performance of a nozzle vane cascade with a showerhead cooling system made of four rows of cylindrical holes was carried out by using the Pressure Sensitive Paint (PSP) technique. Coolant-to-mainstream blowing ratio (BR), density ratio (DR), main flow isentropic exit Mach number (Ma2is) and turbulence intensity level (Tu1) were the considered parameters. The cascade was tested in an atmospheric wind tunnel at Ma2is values ranging from 0.2 to 0.6, with an inlet turbulence intensity level of 1.6% and 9%, at variable injection conditions of BR = 2.0, 3.0, 4.0. Moreover, the influence of DR on the leading edge film cooling performance was investigated: testing was carried out at DR = 1.0, using nitrogen as foreign gas, and DR = 1.5, with carbon dioxide serving as coolant. In the near-hole region, higher BR and Ma2is resulted in higher effectiveness, while higher mainstream turbulence intensity reduced the thermal coverage in between the rows of holes, whatever the BR. Further downstream along the vane pressure side, the effectiveness was negatively affected by rising BR, but positively influenced by lowering the mainstream turbulence intensity. Moreover, a decrease in DR caused a reduction in the film cooling performance, whose extent depends on the injection condition.


Author(s):  
Sai Shrinivas Sreedharan ◽  
Danesh K. Tafti

Computational studies are carried out using Large Eddy Simulations (LES) to investigate the effect of coolant to mainstream blowing ratio in a leading edge region of a film cooled vane. The three row leading edge vane geometry is modeled as a symmetric semi-cylinder with a flat afterbody. One row of coolant holes is located along the stagnation line and the other two rows of coolant holes are located at ±21.3° from the stagnation line. The coolant is injected at 45° to the vane surface with 90° compound angle injection. The coolant to mainstream density ratio is set to unity and the freestream Reynolds number based on leading edge diameter is 32000. Blowing ratios (B.R.) of 0.5, 1.0, 1.5, and 2.0 are investigated. It is found that the stagnation cooling jets penetrate much further into the mainstream, both in the normal and lateral directions, than the off-stagnation jets for all blowing ratios. Jet dilution is characterized by turbulent diffusion and entrainment. The strength of both mechanisms increases with blowing ratio. The adiabatic effectiveness in the stagnation region initially increases with blowing ratio but then generally decreases as the blowing ratio increases further. Immediately downstream of off-stagnation injection, the adiabatic effectiveness is highest at B.R. = 0.5. However, further downstream the larger mass of coolant injected at higher blowing ratios, in spite of the larger jet penetration and dilution, increases the effectiveness with blowing ratio.


Author(s):  
J. Michael Cutbirth ◽  
David G. Bogard

Film cooling performance was studied on a simulated turbine vane model with an objective of determining how much the coolant density ratio affects this performance. Experiments were conducted using coolant density ratios of 1.8 and 1.2. The purpose of the study was to determine if tests done at small density ratios (which is often more viable in a laboratory) can give reasonable predictions of performance at more realistic large density ratios. Furthermore, appropriate scaling parameters were determined. The mainstream flow was operated with low and high turbulence levels. Adiabatic effectiveness was measured in the showerhead region of the vane, and following the first row of coolant holes on the pressure side. Adiabatic effectiveness performance using small density ratio coolant gave performance trends similar to the large density ratio coolant, but quantitative values differed by varying amount depending on operating conditions.


Sign in / Sign up

Export Citation Format

Share Document