Droplet Breakup in Shear and Elongation Dominated Flows in Microfluidic Devices

Author(s):  
Shelley L. Anna ◽  
Gordon F. Christopher ◽  
Nadia Noharuddin

Microfluidic devices have recently been demonstrated as an effective platform for generating monodisperse drops and bubbles, which is important for applications from emulsification to drug delivery and lab on a chip. Here we compare drop formation mechanisms in microfluidic devices in which flows can be either predominantly shear flows, or predominantly elongational flows. In either case, drops of an aqueous liquid form due to viscous stresses imposed by a second oil phase. We show that the two flow types lead to dramatically different ability to control droplet sizes. We characterize the drop size over a large number of experiments by varying capillary number, volume fraction, and viscosity ratio. We observe distinct breakup modes depending on these three dimensionless parameters, and the flow type.

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1476
Author(s):  
Pavel Tkachenko ◽  
Nikita Shlegel ◽  
Pavel Strizhak

The paper presents the experimental research findings for the integral characteristics of processes developing when two-phase liquid droplets collide in a heated gas medium. The experiments were conducted in a closed heat exchange chamber space filled with air. The gas medium was heated to 400–500 °C by an induction system. In the experiments, the size of initial droplets, their velocities and impact angles were varied in the ranges typical of industrial applications. The main varied parameter was the percentage of vapor (volume of bubbles) in the droplet (up to 90% of the liquid volume). The droplet collision regimes (coalescence, bounce, breakup, disruption), size and number of secondary fragments, as well as the relative volume fraction of vapor bubbles in them were recorded. Differences in the collision regimes and in the distribution of secondary fragments by size were identified. The areas of liquid surface before and after the initial droplet breakup were determined. Conditions were outlined in which vapor bubbles had a significant and, on the contrary, fairly weak effect on the interaction regimes of two-phase droplets.


2020 ◽  
Vol 226 ◽  
pp. 115856
Author(s):  
Pei Liang ◽  
Jiaming Ye ◽  
De Zhang ◽  
Xiubing Zhang ◽  
Zhi Yu ◽  
...  

1977 ◽  
Vol 99 (3) ◽  
pp. 309-314 ◽  
Author(s):  
H. C. Simmons

The paper presents data on the drop-size/volume-fraction distributions of sprays observed with a large number of gas-turbine fuel nozzles of different types including both pressure and air-atomizers, using a range of fuel viscosities, at a variety of operating conditions. The data were obtained by both optical and wax-droplet methods. It is shown that a universal nondimensional correlation can be established for all the fuel nozzles when the drop-size is normalized to the mass median diameter. The correlation enables prediction of the drop-size/volume-fraction distribution for a spray given only the mass median or Sauter mean diameter.


Author(s):  
Youssef K. Hamidi ◽  
Sudha Dharmavaram ◽  
Levent Aktas ◽  
M. Cengiz Altan

Effect of fiber volume fraction on occurrence, morphology, and spatial distribution of microvoids in resin transfer molded E-glass/epoxy composites is investigated. Three disk-shaped center-gated composite parts containing 8, 12, and 16 layers of randomly-oriented, E-glass fiber perform are molded, yielding 13.5%, 20.5%, and 27.5% fiber volume fractions. Voids are evaluated by microscopic image analysis of the samples obtained along the radius of these disk-shaped composites. The number of voids is found to decrease moderately with increasing fiber content. Void areal density decreased from 10.5 voids/mm2 to 9.5 voids/mm2 as fiber content is increased from 13.5% to 27.5%. Similarly, void volume fraction decreased from 3.1% to 2.5%. Increasing fiber volume fraction from 13.5% to 27.5% is found to lower the contribution of irregularly-shaped voids from 40% of total voids down to 22.4%. Along the radial direction, combined effects of void formation by mechanical entrapment and void mobility are shown to yield a spatially complex void distribution. However, increasing fiber content is observed to affect the void formation mechanisms as more voids are able to move toward the exit vents during molding. These findings are believed to be applicable not only to resin transfer molding but generally to liquid composite molding processes.


Author(s):  
Shuichi Torii

The aim of the present study is to investigate the thermal fluid flow transport phenomenon of nanofluids in the heated horizontal circular tube. Consideration is given to the effects of volume fraction of the nanoparticle on the laminar heat transfer and thermal properties. Alumina (Al2O3) and oxide copper (CuO) are employed here as nanoparticles. It is found from the study that (1) the viscosity ratio of nanofluids increases in accordance with an increase of the volume fraction of the nanoparticles, (2) the nanofluids have substantially higher value of Nusselt number than the same liquids without nanoparticles and the Nusselt number of nanofluids increase with an increase of the Reynolds number, and (3) the dispersibility of particle in the nanofluid becomes worse slightly with an increase of the volume fraction of the nanoparticles.


2008 ◽  
Author(s):  
Wingki Lee ◽  
Lynn M. Walker ◽  
Shelley L. Anna ◽  
Albert Co ◽  
Gary L. Leal ◽  
...  

Author(s):  
Saira F. Pineda ◽  
Arjan M. Kamp ◽  
D. Legendre ◽  
Armando J. Blanco

Flow constituted by drops appears in a wide range of natural, biological and engineering situations. For example, liquid-liquid two phase flow inside capillaries constitutes a model commonly used to represent fluid flow in a petroleum reservoir. The typical modeling approach considers inertial forces negligible in comparison to viscous forces, allowing the use of Stokes equation to study flow dynamics. Very few numerical simulations have been made considering inertial effects. In this project, the flow of a periodic train of drops in a viscous suspending fluid, due to the influence of a fixed pressure gradient, was studied by numerical simulation considering the full Navier-Stokes equations. A numerical approach based on a Volume of Fluid (VOF) formulation was employed using JADIM software, developed by the Institut de Mécanique des Fluides de Toulouse, France. JADIM solves Navier-Stokes equations using a VOF finite volume method, second order in space and time using structured mesh. This two-fluid approach without reconstruction of the interface allows simulating two-phase flows with complex interface shapes. Densities of the drops equal to those of the suspending fluid and a constant interface tension were assumed. The effect of drop size, viscosity ratio, interfacial forces and system pressure gradient on the flow dynamics was studied. Parameters values were chosen to be representative for some particular viscous oil. The result validation shows an excellent agreement between both numerical results. However, there are relative differences between them due to the increase in flow velocity when drop relative size increase and validity of Stokes approach is questionable. Results show non-symmetric eddies in the continuum phase, in a referential frame fixed to the drop. The shape of eddies is strongly influenced by viscosity radio. Drop mobility decreases with increasing size. Additionally, drop mobility also decreases when the viscosity ratio increases. Extra pressure gradient of the system due to the presence of the drop shows a strong dependency on the size ratio between the drop and the pore. For size ratio lower than 0.5, the extra pressure gradient required to move the continuum phase is small. However, when drop to micro-channel ratio exceeds 0.5, the extra pressure gradient significantly increases when the drop size increases. Also, viscosity ratio affects on the system pressure loss, especially in cases where the viscosity ratio is high. The analysis of the capillary number effect on the dynamics of the two-phase system shows that it does not influence drop mobility for the drop sizes considered.


2019 ◽  
Vol 21 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Farzad Poursadegh ◽  
Oleksandr Bibik ◽  
Boni Yraguen ◽  
Caroline L Genzale

Diesel sprays present a challenging environment for detailed quantitative measurement of the liquid field, and to date, there have been only a few efforts to characterize drop sizes within the family of Engine Combustion Network (ECN) diesel sprays. Drop sizing diagnostics, including optical microscopy and Ultra-Small Angle X-ray Scattering (USAXS), have been recently demonstrated in Spray A/D ECN activities, but little data exist to validate these results. This work therefore seeks to extend the available ECN data on the liquid phase field and provide a new comparative data set for assessment of previous ECN drop sizing measurements. In particular, this work presents the development of a two-wavelength, line-of-sight extinction measurement to examine liquid volume fraction and the corresponding droplet field in high-pressure fuel sprays. Here, extinction of lasers emitting at 10.6 μm and 0.633 μm are used for the measurement. To enable quantification of the liquid field in optically dense regions of the spray, a transfer function is developed to account for the influence of multiple scattering. The developed diagnostic is then applied to n-dodecane sprays from the ECN Spray A and Spray D injectors at varying fuel rail pressures and atmospheric chamber condition. Overall, the results show a reasonable agreement with droplet sizes measured using USAXS, as well as from more recent measurements using a Scattering-Absorption Measurement Ratio (SAMR) technique also developed in our group. This is particularly the case near the spray periphery, where on average, less than 40% difference in the measured Sauter mean diameter is observed. Nonetheless, an apparent discrepancy is observed between drop sizes from different diagnostics close to the jet centerline (i.e. nearly 100% difference between available data for Spray D injector). Moreover, the presented diagnostic shows an improved capability in the dilute regions of the spray, where x-ray-based diagnostics are generally subject to high noise and low signal sensitivity.


2022 ◽  
pp. 110941
Author(s):  
Martha L. Taboada ◽  
Eva Müller ◽  
Nora Fiedler ◽  
Heike P. Karbstein ◽  
Volker Gaukel

2007 ◽  
Vol 584 ◽  
pp. 1-21 ◽  
Author(s):  
NISHITH AGGARWAL ◽  
KAUSIK SARKAR

The deformation of a viscoelastic drop suspended in a Newtonian fluid subjected to a steady shear is investigated using a front-tracking finite-difference method. The viscoelasticity is modelled using the Oldroyd-B constitutive equation. The drop response with increasing relaxation time λ and varying polymeric to the total drop viscosity ratio β is studied and explained by examining the elastic and viscous stresses at the interface. Steady-state drop deformation was seen to decrease from its Newtonian value with increasing viscoelasticity. A slight non-monotonicity in steady-state deformation with increasing Deborah number is observed at high Capillary numbers. Transient drop deformation displays an overshoot before settling down to a lower value of deformation. The overshoot increases with increasing β. The drop shows slightly decreased alignment with the flow with increasing viscoelasticity. A simple ordinary differential equation model is developed to explain the various behaviours and the scalings observed numerically. The critical Capillary number for drop breakup is observed to increase with Deborah number owing to the inhibitive effects of viscoelasticity, the increase being linear for small Deborah number.


Sign in / Sign up

Export Citation Format

Share Document