Effect of Fiber Content on Void Morphology in Resin Transfer Molded E-Glass/Epoxy Composites

Author(s):  
Youssef K. Hamidi ◽  
Sudha Dharmavaram ◽  
Levent Aktas ◽  
M. Cengiz Altan

Effect of fiber volume fraction on occurrence, morphology, and spatial distribution of microvoids in resin transfer molded E-glass/epoxy composites is investigated. Three disk-shaped center-gated composite parts containing 8, 12, and 16 layers of randomly-oriented, E-glass fiber perform are molded, yielding 13.5%, 20.5%, and 27.5% fiber volume fractions. Voids are evaluated by microscopic image analysis of the samples obtained along the radius of these disk-shaped composites. The number of voids is found to decrease moderately with increasing fiber content. Void areal density decreased from 10.5 voids/mm2 to 9.5 voids/mm2 as fiber content is increased from 13.5% to 27.5%. Similarly, void volume fraction decreased from 3.1% to 2.5%. Increasing fiber volume fraction from 13.5% to 27.5% is found to lower the contribution of irregularly-shaped voids from 40% of total voids down to 22.4%. Along the radial direction, combined effects of void formation by mechanical entrapment and void mobility are shown to yield a spatially complex void distribution. However, increasing fiber content is observed to affect the void formation mechanisms as more voids are able to move toward the exit vents during molding. These findings are believed to be applicable not only to resin transfer molding but generally to liquid composite molding processes.

Author(s):  
Youssef K. Hamidi ◽  
Sudha Dharmavaram ◽  
Levent Aktas ◽  
M. Cengiz Altan

Effect of fiber volume fraction on occurrence, morphology, and spatial distribution of microvoids in resin transfer molded E-glass/epoxy composites is investigated. Three disk-shaped center-gated composite parts containing 8, 12, and 16 layers of randomly-oriented, E-glass fiber perform are molded, yielding 13.5, 20.5 and 27.5% fiber volume fractions, respectively. Voids throughout these disk-shaped composites are evaluated by microscopic image analysis of samples obtained along the radius. Each identified void’s equivalent radius, area, and shape are determined at 200x magnification. Number of voids is found to decrease moderately with increasing fiber content. Void areal density decreased from 10.5 to 9.5 voids/mm2 as fiber content is increased from 13.5 to 27.5% fiber content. Similarly, void volume fraction decreased from 3.1 to 2.5%. Average void size is observed to remain similar at 53 to 55 μm when the fiber content is increased from 13.5 to 27.5%. Increasing fiber volume fraction from 13.5 to 27.5% lowers the contribution of irregularly-shaped voids from 40% of total voids down to 22.4%. Along the radial direction, combined effects of void formation by mechanical entrapment and void mobility are shown to yield a spatially complex void distribution. However, increasing fiber content is observed to affect the void formation mechanisms as more voids are able to move towards the exit vents during molding. These findings are believed to be applicable not only to resin transfer molding, but generally to liquid composite molding processes.


2018 ◽  
Vol 52 (24) ◽  
pp. 3289-3297 ◽  
Author(s):  
Benoît Cosson

Tracking the variability of natural fiber-based fabrics properties, such as local areal weight, fiber volume fraction, and therefore permeability, is crucial to optimize the parts processing of the bio-composites. This paper aims at developing a cost-effective and efficient optical method in order to predict the permeability of flax fabrics used in liquid composite molding processes. This method using an LCD monitor as light source and a reflex camera as a measurement device is based on light transmission measurement through fabric thickness. The raw data given by the camera are gray scale maps, transformed into areal weight maps. FEM software based on levelset method is finally used to highlight the influence of the local variability of the fiber volume fraction, and of the related fabrics porosity and permeability on the mold filling time. The proposed method can be directly implemented on the manufacturing line of the composites. It can be used to optimize, part-to-part, the resin consumption by predicting the resin flow through perform. Interestingly, this novel optical method is auto-calibrated and does not depend on picture resolution.


2010 ◽  
Vol 123-125 ◽  
pp. 543-546 ◽  
Author(s):  
Chen Song Dong ◽  
Tze Chiun Tsai

Resin-rich zones are a common phenomenon in liquid composite molding processes. These resin-rich zones cause unwanted residual stress and deformation, and part-to-part variation, and thus they need to be studied in the design of composite structures. An experimental study on the formation of resin-rich zones in angled composite parts is presented in this paper. Two open-channel mold sets were designed and fabricated. Fiber preforms were loaded into these molds and the gaps formed were visually inspected by a microscope. The influences of corner radius, fiber volume fraction, enclosed angle, and stacking sequence were investigated, and significant factors affecting gap thickness were identified by Design of Experiments (DOE). It can be concluded from the experimental results that: 1) Fiber volume fraction is the most significant factor affecting gap thickness. Gap thickness is inversely proportional to fiber volume fraction; 2) Gap thickness is inversely proportional to radius; 3) The gap thickness of unidirectional preforms is larger than that of the cross-ply preforms.


2021 ◽  
pp. 002199832110047
Author(s):  
Mahmoud Mohamed ◽  
Siddhartha Brahma ◽  
Haibin Ning ◽  
Selvum Pillay

Fiber prestressing during matrix curing can significantly improve the mechanical properties of fiber-reinforced polymer composites. One primary reason behind this improvement is the generated compressive residual stress within the cured matrix, which impedes cracks initiation and propagation. However, the prestressing force might diminish progressively with time due to the creep of the compressed matrix and the relaxation of the tensioned fiber. As a result, the initial compressive residual stress and the acquired improvement in mechanical properties are prone to decline over time. Therefore, it is necessary to evaluate the mechanical properties of the prestressed composites as time proceeds. This study monitors the change in the tensile and flexural properties of unidirectional prestressed glass fiber reinforced epoxy composites over a period of 12 months after manufacturing. The composites were prepared using three different fiber volume fractions 25%, 30%, and 40%. The results of mechanical testing showed that the prestressed composites acquired an initial increase up to 29% in the tensile properties and up to 32% in the flexural properties compared to the non-prestressed counterparts. Throughout the 12 months of study, the initial increase in both tensile and flexural strength showed a progressive reduction. The loss ratio of the initial increase was observed to be inversely proportional to the fiber volume fraction. For the prestressed composites fabricated with 25%, 30%, and 40% fiber volume fraction, the initial increase in tensile and flexural strength dropped by 29%, 25%, and 17%, respectively and by 34%, 26%, and 21%, respectively at the end of the study. Approximately 50% of the total loss took place over the first month after the manufacture, while after the sixth month, the reduction in mechanical properties became insignificant. Tensile modulus started to show a very slight reduction after the fourth/sixth month, while the flexural modulus reduction was observed from the beginning. Although the prestressed composites displayed time-dependent losses, their long-term mechanical properties still outperformed the non-prestressed counterparts.


Author(s):  
M. Akif Yalcinkaya ◽  
Gorkem E. Guloglu ◽  
Maya Pishvar ◽  
Mehrad Amirkhosravi ◽  
E. Murat Sozer ◽  
...  

Vacuum-assisted resin transfer molding (VARTM) has several inherent shortcomings such as long mold filling times, low fiber volume fraction, and high void content in fabricated laminates. These problems in VARTM mainly arise from the limited compaction of the laminate and low resin pressure. Pressurized infusion (PI) molding introduced in this paper overcomes these disadvantages by (i) applying high compaction pressure on the laminate by an external pressure chamber placed on the mold and (ii) increasing the resin pressure by pressurizing the inlet resin reservoir. The effectiveness of PI molding was verified by fabricating composite laminates at various levels of chamber and inlet pressures and investigating the effect of these parameters on the fill time, fiber volume fraction, and void content. Furthermore, spatial distribution of voids was characterized by employing a unique method, which uses a flatbed scanner to capture the high-resolution planar scan of the fabricated laminates. The results revealed that PI molding reduced fill time by 45%, increased fiber volume fraction by 16%, reduced void content by 98%, improved short beam shear (SBS) strength by 14%, and yielded uniform spatial distribution of voids compared to those obtained by conventional VARTM.


2016 ◽  
Vol 2 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Hasan Jalilifar ◽  
Fatholla Sajedi ◽  
Sadegh Kazemi

The flexural strength of conventional concrete material is known to be enhanced by incorporating a moderate volume-fraction of randomly distributed fibers. However, there is limited information on describing the influence of fiber volume-fraction on the compressive and flexural strength of recycled coarse aggregate concrete (RCA-C) material. This paper reports on experimental test results of the RCA-C material replaced with 0, 30, 50 and 100% recycled aggregate and 0, 0.5, 1 and 1.5% steel fiber volume fraction. Three-point flexural tests of notched prism specimens were completed. The mechanical properties in compression were characterized using cube specimens. Significant improvement in compressive and flexural strength of RCA-C was found as fiber content increased from 0 to 1.5%. The experimental test results of RCA-C were further evaluated to investigate the influence of fiber content on flexural toughness. According to test results, the addition of steel fibers to RCA-C material appreciably increased the flexural toughness.


2020 ◽  
pp. 073168442096321
Author(s):  
Dakota R Hetrick ◽  
Seyed Hamid Reza Sanei ◽  
Charles E Bakis ◽  
Omar Ashour

Fiber volume fraction is a driving factor in mechanical properties of composites. Micromechanical models are typically used to predict the effective properties of composites with different fiber volume fractions. Since the microstructure of 3D-printed composites is intrinsically different than conventional composites, such predictions need to be evaluated for 3D-printed composites. This investigation evaluates the ability of the Voigt, Reuss, and Halpin–Tsai models to capture the dependence of modulus and strength of 3D-printed composites on varying fiber volume fraction. Tensile coupons were printed with continuous carbon fiber-reinforced Onyx matrix using a Markforged Mark Two printer. Specimens were printed at five different volume fractions with unidirectional fibers oriented at either [Formula: see text] to obtain longitudinal, shear, and transverse properties, respectively. It is shown that the Voigt model provides an excellent fit for the longitudinal tensile strength and a reasonable fit for the longitudinal modulus with varied fiber content. For the transverse direction, while the Reuss model fails to capture the transverse modulus trend, the Halpin–Tsai model provides a reasonable fit as it incorporates more experimental parameters. Like conventional composites, addition of fibers degrades the transverse strength, and the transverse strength decreases with increasing fiber volume fraction. The shear modulus variation with fiber content could not be fitted reasonably with either Halpin–Tsai model or Reuss model.


2016 ◽  
Vol 37 (19) ◽  
pp. 1202-1216 ◽  
Author(s):  
Alejandra Constante ◽  
Selvum Pillay

The demand for natural fiber composites in the automotive industry in both Europe and the United States has been forecasted to increase in the coming years. The natural fiber composites based on highly commercialized fibers such as flax, hemp, and sisal has grown to become an important sector of polymeric composites. However, little attention has been addressed to expanding natural fiber composites to include new sources of emerging natural reinforcements, such as reclaimed algae fibers, that have a multiple environmental benefits. Not only are extracted algae fibers biodegradable, the reclamation process has the added benefit of restoring health of waterways choked with algae. This study focuses on the processability of algae fiber–epoxy composites. Short fibers, chemically extracted from raw reclaimed algae, were prepared for natural fiber composite products in two ways. First, randomly oriented mats were produced using the wet-laid process to create layered, compression-molded laminates. Second, loose fibers were dispersed directly into the thermoset matrix to produce a bulk molding compound that was further compression molded into composite lamina. The effect of processing variables such as compaction pressure, temperature, and time were addressed. Moreover, the effect of fiber volume fraction ( υf) and fiber form were considered. Enhanced mechanical properties were found when 56% υf algae fiber was used for the compression-molded laminates composite. This variant exhibited an improvement on the flexural and tensile modulus of 70% and 86% when compared to the neat epoxy. However, the volume of porosity on the same variant was 11% due to lack of compression in some of the fibers. The effect of porosity on the theoretical stiffness was estimated by using the Cox–Krenchel model. Furthermore, an empirical exponential model was formulated to characterize the multi-scale effect of compaction pressure on the overall fiber volume fraction, υf.


Sign in / Sign up

Export Citation Format

Share Document