Low Velocity Impact of Carbon/Zylon and Carbon/Kevlar Composite Laminates

Materials ◽  
2005 ◽  
Author(s):  
Kamaldeen Yusuff ◽  
Mohammad Mahinfalah ◽  
Amin Salehi-Khojin ◽  
Mohammad Alimi

The response of composite laminates to low velocity impact at different energy levels for carbon fiber, carbon/Zylon and carbon/Kevlar composites were investigated in this study. The samples consisted of impact-side face sheet having different combination of 8-layer carbon, 6-layer carbon/2-layer Zylon and 6-layer carbon/2-layer Kevlar laminates. Tests were conducted at energy levels of 8J, 15J, 25J, and 50J. The aim of this study was to investigate the impact of adding a high modulus fiber or low modulus fiber to carbon fiber with respect to Low velocity impact at different energy levels. Results and overall conclusions for each of the composite laminates are presented in detail.

Author(s):  
Abu Rasel ◽  
Evan Kimbro ◽  
Ram Mohan ◽  
Ajit D. Kelar

This paper presents computational and experimental investigation of the low velocity impact behavior of nano engineered E-glass fiber reinforced composite laminates. The Tetra Ethyl Orthosilicate (TEOS) chemically engineered glass nanofibers were manufactured using electrospinning technique and were investigated for their potential to improve the interlaminar properties. Plain weave fiberglass prepregs were used for manufacturing ten ply thick laminates. For production of the laminates with electrospinning interface layers the addition of the electrospinning sheets and an additional layer of resin film was used. The fabricated laminates were subjected to low velocity impacts of various energy levels to study the progressive damage and deformation mechanics of fiberglass laminates with and without electrospun nanofibers. The low velocity impact behavior was modeled using the transient dynamic finite element program LSDYNA. It was observed that the simulations results are in good agreement with the experimental results for lower impact energies. In addition, the simulated maximum impact force is smaller than the experimental value (soft response) at each drop height and at higher energy levels, the area under impact force vs time increases when electrospun nanofibers are used in the laminates. The study indicates that, the impact duration increases when electrospun nanofibers are used. Impact duration increases due to an additional damage accumulations in electrospun nanofibers layers. Both computational and experimental investigations clearly indicate that inserting interlaminar electrospun nanofiber layers improves the impact resistance of composites by absorbing additional impact energies.


2020 ◽  
Vol 12 (10) ◽  
pp. 168781402096504
Author(s):  
Miaomiao Duan ◽  
Zhufeng Yue ◽  
Qianguang Song

A detailed investigation of damage and failure mechanisms of composite laminates under low-velocity impact (LVI) by experimental tests and numerical modeling is presented. Five impact energy levels were investigated on composite laminates by drop-weight tests. Permanent indentations were measured, and delamination areas of each interface induced by each LVI event were captured using an ultrasonic C-scan. The 3D volume elements with a user-defined, material-based finite element model (FEM) has been applied to predict the LVI event considering damage modes, including intra-ply damage and inter-ply damage. The results of the FEM were found to agree well with experimental observations. Internal damage of the laminate during the impact process was analyzed. For thick laminates, the initiation of damage is observed at the first layer, and then spreads from the impact surface to the back, leading to a pine-type damage pattern as the thickness increases. Frequency-sweep vibration tests of composite laminates subjected to LVI events were studied under a “fixed ends” boundary condition. Our results show that it is reasonable to use frequency-sweep vibration experiments to evaluate the damage of laminates subjected to LVI events.


2014 ◽  
Vol 566 ◽  
pp. 463-467
Author(s):  
Pu Xue ◽  
H.H. Chen ◽  
W. Guo

This paper studies the impact damage under low velocity impact for composite laminates based on a nonlinear progressive damage model. Damage evolution is described by the framework of the continuum damage mechanics. The real impact damage status of composite laminates has been used to analyze the residual compressive strength instead of assumptions on damage area after impact. The validity of the methodologies has been demonstrated by comparing the numerical results with the experimental data available in literature. The delamination area has an error of 11.3%. The errors of residual strength and compressive displacement are 8.9% and 15%, which indicate that the numerical results matched well with the experimental data.


2013 ◽  
Vol 774-776 ◽  
pp. 1242-1249 ◽  
Author(s):  
Albert U. Ude ◽  
Ahmad K. Ariffin ◽  
Che H. Azhari

This paper describes the result of an experimental investigation on the impact damage on woven natural silk/epoxy composite face-sheet and PVC foam core sandwich panel. The test panels were prepared by hand-lay-up method. The low-velocity impact response of the composites sandwich panels is studied at three energy levels of 32, 48, and 64 joule respectively. The focus is to investigate damage initiation, damage propagation, and mechanisms of failure. It was observed that absorption energy capability decreased as impact energy increased. There was deflection on each impact load configuration at some point but their margin was insignificant. Physical examination of the specimen show that damage areas increased with increase in impact load. The novelty of this research is the use of woven natural silk fabric as a reinforcement fibre.


2013 ◽  
Vol 387 ◽  
pp. 185-188
Author(s):  
Jian Yu Zhang ◽  
Ming Li ◽  
Li Bin Zhao ◽  
Bin Jun Fei

A progressive damage model (PDM) composed by 3D FEM, Hashin and Ye failure criteria and Changs degradation rules was established to deeply understand the failure of a new material system CCF300/5428 under low velocity impact. User defined subroutines were developed and embedded into the general FEA software package to carry out the failure analysis. Numerical simulations provide more information about the failure of composite laminates under low velocity impact, including initial damage status, damage propagation and final failure status. The history of the impact point displacement and various damage patterns were detailed studied.


2021 ◽  
Author(s):  
Karmanya Ratra

Carbon fiber bicycle wheels were tested under low velocity impact to monitor the damage evolution of the impact event. A wheel model designed by KQS Inc. (industrial partner) with eight different configurations, including spoke tension, number of spokes, and location of impact on the rim were investigated. IR thermography combined with PCA was used to monitor the damage during impact. Results showed that wheels in line with spokes had 16% higher impact energy absorption compared to those impacted in between spokes on average (58.9 J vs 70.2 J). The 20 spoked wheels had a slightly higher (6%) impact energy absorption than the 24 spoked wheels. The added stiffness due to the extra spokes reduced the impact energy absorption of rim. Wheels with higher spoke tension also had slightly improved impact energy absorption (4%). The test protocol established in this study provides a good understanding of the wheel’s impact damage evolution.


2021 ◽  
Author(s):  
Benedict Lawrence Sy

Flax/epoxy composite laminates were tested under low velocity impact loading, using passive Infra-Red thermography to monitor the damage evolution during the impact event. Two configurations were tested: unidirectional ([08F]S) and cross-ply ([(0/90)4F]S). The unidirectional laminate exhibited poor and brittle impact response. Conversely, the cross-ply laminate showed better impact performance with its energy penetration threshold three times higher than the unidirectional. Its impact toughness was also 2.5 times higher. Additional tests were conducted to evaluate the effect of hybridization with Kevlar®49. Test results showed significant improvement on the impact performance of the unidirectional flax/epoxy laminate. Hybridization increased its energy penetration threshold three times and impact toughness five times. Conversely, it reduced the penetration threshold of the cross-ply flax/epoxy laminate by 10%; however, it more than doubled the impact toughness. The impact toughness the Kevlar-Flax/epoxy laminates were slightly higher than those of aluminum and CFRP’s, making them sustainable alternatives for impact applications.


2021 ◽  
Author(s):  
Kasım Karataş ◽  
Okan Özdemir

Honeycomb structures are used where the weight to strength ratio is important. They are also preferred to absorb the energy from the blows received. In this study, low velocity impact behavior of aluminum honeycomb composites with different core thicknesses were investigated. Aluminum honeycombs used in this study are AL3003 honeycombs of 10 mm and 15 mm thicknesses. Glass fiber reinforced epoxy sheets with a thickness of 2 mm were used as the surface sheet material. Composite plates were produced by vacuum infusion method. The upper and lower face plates were cut in dimensions of 100x100 mm. The cut plates were attached to the core material with adhesive and a sandwich structure was formed. After bonding, low velocity impact tests were performed on these test samples at 40J, 100J and 160J energy levels using the composite CEAST Fractovis Plus impact testing machine. According to the results obtained from the impact tests, at higher energy levels, 15 mm thick composites have 10-15% higher energy absorption capacity than 10 mm.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Mubarak Ali ◽  
S. C. Joshi ◽  
Mohamed Thariq Hameed Sultan

Fibre reinforced polymer laminated composites are susceptible to impact damage during manufacture, normal operation, maintenance, and/or other stages of their life cycle. Initiation and growth of such damage lead to dramatic loss in the structural integrity and strength of laminates. This damage is generally difficult to detect and repair. This makes it important to find a preventive solution. There has been abundance of research dealing with the impact damage evolution of composite laminates and methods to mitigate and alleviate the damage initiation and growth. This article presents a comprehensive review of different strategies dealing with development of new composite materials investigated by several research groups that can be used to mitigate the low velocity impact damage in laminated composites. Hybrid composites, composites with tough thermoplastic resins, modified matrices, surface modification of fibres, translaminar reinforcements, and interlaminar modifications such as interleaving, short fibre reinforcement, and particle based interlayer are discussed in this article. A critical evaluation of various techniques capable of enhancing impact performance of laminated composites and future directions in this research field are presented in this article.


Sign in / Sign up

Export Citation Format

Share Document