Mechanical and Thermal Behavior for Machining Ti-6Al-4V With AlMgB14 and WC-Co Tools

Author(s):  
L. Deshayes ◽  
J. L. Evans ◽  
R. Ivester ◽  
D. G. Bhat ◽  
S. A. Batzer ◽  
...  

Many tool materials dissolve, diffuse, and/or react with titanium due to the high temperatures at the tool/workpiece interface. Potential next generation tool materials that would improve the machining of titanium and eliminate the contamination of the work piece are being developed. One material, Aluminum Boride (AlMgB14), is the basis of the research presented in this paper. Specimens of the newly developed tool material, AlMgB14 were fabricated into a standard tool geometry. This tool material was compared with a standard WC-Co tool material to machine a Ti-6Al-4V workpiece. During orthogonal cutting, thermal and force measurements were made using both types of tool material. The measurements are compared with finite element simulations. This paper shows higher chip temperatures are obtained with AlMgB14 and this material demonstrates benefits associated with tool thermal conductivity, including improved chip segmentation, smaller cutting and thrust forces. Nevertheless, a weakness of AlMgB14 is its fracture toughness, which needs to be improved for better performance in an industrial environment.

2016 ◽  
Vol 1137 ◽  
pp. 79-87
Author(s):  
Ravinder Kataria ◽  
Jatinder Kumar ◽  
B.S. Pabla

WC-Co composite materials possess a vast range of industrial applications owing to their excellent properties such as superior hardness, toughness and dimensional stability. Present article has been targeted at investigating the impact of different experimental conditions (power rating, cobalt content, tool material, thickness of work piece, tool geometry, and abrasive grit size) on penetration rate in ultrasonic drilling of WC-Co composite material. Taguchi’s L-36 orthogonal array has been employed for conducting the experiments. Significant factors have been identified using analysis of variance (ANOVA) test. The experimental results revealed that power rating, abrasive grit size, and tool profile is most significant factor for penetration rate. From the microstructure analysis, the modes of material deformation have been observed and the parameters (i.e. work material properties, grit size, and power rating) were observed as the most crucial for the deformation mode.


2011 ◽  
Vol 223 ◽  
pp. 152-161 ◽  
Author(s):  
Mathias Agmell ◽  
Aylin Ahadi ◽  
Jan Eric Ståhl

This study are focused on the deformation zones occurring in the work piece in a machining process and the corresponding cutting forces. The fully coupled thermo-mechanical FE-model for orthogonal cutting, developed in [1] is utilized. The work piece material is modeled with Johnson-Cook plasticity including damage formulation. Simulations for different feed depths were performed. The cutting forces, the chip thickness ratio and the deformation widths were determined experimentally by the quick-stop images and a force measurements. The results from the simulations have been compared to experimental data for the cutting forces and the chip thickness ratio as a function of the theoretical chip thickness.


2020 ◽  
Vol 2020 (12) ◽  
pp. 48-56
Author(s):  
Bori Mokrickiy ◽  
Anna Morozova

The purpose of this work: the engineering process optimization of 09H17N7Yu steel turning at the expense of creating the procedure allowing the diagnostics of an engineering cutting system state on the results of cutting force control, inverse problem solution, that is, cutting force control according to the analysis results of system state diagnostics, the optimization of cutting mode parameters to ensure the required values of a cutting force, on the basis of the analysis results of a cutting force the tool materials and tool geometry should be recommended for cutter wear-resistance increase, the prediction of tool life at the expense of designing new tool materials and tool geometry for new conditions of their operation. There are presented recommendations to ensure a correct choice of carbide cutting inserts quality for the specified conditions of their operation. On the investigation results there are obtained conclusions: the most promising for special stainless steel 09H17N7Yu turning were tool materials: TC8+TiCN(mkm) + (TiAl)N(3mkm) + Al2O3(5mkm) + TiC(5mkm); TC8+Al2O3(2mkm) + (Ti)CN(5mkm) + (TiAl)N(3mkm) + TiN(3mkm); TC8 + (TiAl)N(3mkm) + Al2O3(3mkm) + (TiAl)N(3mkm) + Al2O3(3mkm); it is defined that at cutting mode forcing (cutting speed 60m/min, depth 2.5mm) or at turning titanium alloy TT-22 more complex in machining the mentioned tool materials met the demands made, that is, real insert life varied from the designed one not considerably (in the first case – 7% maximum, in the second one – 14%), that is the most acceptable. Work novelty: there is offered and substantiated a procedure for cutting force constituents use on the basis of simulation for the choice or design of tool material for turning in different conditions of tool operation.


Author(s):  
Bori Mokrickiy ◽  
Anna Morozova

The purpose of this work: the engineering process optimization of 09H17N7Yu steel turning at the expense of creating the procedure allowing the diagnostics of an engineering cutting system state on the results of cutting force control, inverse problem solution, that is, cutting force control according to the analysis results of system state diagnostics, the optimization of cutting mode parameters to ensure the required values of a cutting force, on the basis of the analysis results of a cutting force the tool materials and tool geometry should be recommended for cutter wear-resistance increase, the prediction of tool life at the expense of designing new tool materials and tool geometry for new conditions of their operation. There are presented recommendations to ensure a correct choice of carbide cutting inserts quality for the specified conditions of their operation. On the investigation results there are obtained conclusions: the most promising for special stainless steel 09H17N7Yu turning were tool materials: TC8+TiCN(mkm) + (TiAl)N(3mkm) + Al2O3(5mkm) + TiC(5mkm); TC8+Al2O3(2mkm) + (Ti)CN(5mkm) + (TiAl)N(3mkm) + TiN(3mkm); TC8 + (TiAl)N(3mkm) + Al2O3(3mkm) + (TiAl)N(3mkm) + Al2O3(3mkm); it is defined that at cutting mode forcing (cutting speed 60m/min, depth 2.5mm) or at turning titanium alloy TT-22 more complex in machining the mentioned tool materials met the demands made, that is, real insert life varied from the designed one not considerably (in the first case – 7% maximum, in the second one – 14%), that is the most acceptable. Work novelty: there is offered and substantiated a procedure for cutting force constituents use on the basis of simulation for the choice or design of tool material for turning in different conditions of tool operation.


2014 ◽  
Vol 592-594 ◽  
pp. 43-47 ◽  
Author(s):  
K.K. Ramachandran ◽  
N. Murugan ◽  
S. Shashi Kumar

Friction Stir Welding (FSW) as a joining technique with regard to low melting temperature materials such as aluminum alloys has already been established and implemented in the industry. But, with regard to high melting temperature metals and alloys the major issue still to get successfully addressed is a pertinent tool material for a class of work materials and to get their operating parameters optimized. This paper presents a detailed assessment on the FSW of high melting temperature (HMT) materials, giving emphasis on the tool materials, tool geometry and FSW equipment aspects based on the information gathered from experimental studies and research publications.


Author(s):  
Vikram Bedekar ◽  
Deepak G. Bhat ◽  
Stephen A. Batzer ◽  
Larry Walker ◽  
L. F. Allard

There has been a growing concern about the reactivity at the tool/work-piece interface during machining, leading to lower tool life. The problem is more severe especially in the case of aerospace alloys such as Ti-6Al-4V and stainless steels. Recently, a new ultra hard ceramic material, AlMgB14, was reported with properties that show considerable promise as a cutting tool material for machining titanium alloys [1]. This paper investigates the chemical wear behavior of AlMgB14, in the machining of aerospace alloys. The mechanical properties of AlMgB14 are compared with leading cutting tool materials (WC-Co, Al2O3SiCw-TiC and Al2O3-TiC), which are used extensively in machining titanium and ferrous alloys. Materials characterization of candidate tool materials shows that AlMgB14 exhibits superior hardness, fracture toughness and abrasive wear resistance as compared to the other cutting tool materials. We also report on a study of chemical reactivity of tool materials (AlMgB14 and WC-6%Co) in machining various alloys such as Ti-6Al-4V and Fe-18Ni-8Cr. The chemical reactivity was investigated using diffusion tests conducted in vacuum at 1000°C for 120 hrs. Transverse sections of couples were characterized using electron probe micro analysis (EPMA), to determine the extent of diffusion zones. The results show that AlMgB14 shows considerably less reactivity with titanium alloys when compared with cemented carbide cutting tools. It was also observed that the boride reacts significantly with the iron based Fe-18Ni-8Cr alloy. The paper also reports on the evaluation of the free energy of formation of AlMgB14 using the thermochemical software program FactSage™.


Author(s):  
Юрий Зубарев ◽  
Yuriy Zubarev ◽  
Александр Приемышев ◽  
Alexsandr Priyomyshev

Tool materials used for polymeric composite blank machining, kinds of tool material wear arising at machining these blanks, and also the impact of technological parameters upon tool wear are considered. The obtained results allow estimating the potentialities of physical models at polymeric composite blanks cutting.


2021 ◽  
Author(s):  
Stefan Baier ◽  
Lukas Kokozinski ◽  
Daniel Schraknepper ◽  
Thomas Bergs

Plunge milling is a critical process step in mass manufacturing of rectangular shapes in electrical connector components. These shapes are manufactured by drilling a pilot hole and subsequent plunge milling with a radial offset (pitch) one or more times. The plunged cavity serves as guidance for the final broaching cut. In light of new legislative initiatives, the electronics industry is forced to use lead-free Cu-Zn-Alloys for mass manufacturing of these connectors. The plunging tool is deflected due to the higher cutting forces experienced in machining of lead-free CuZn-alloys in comparison to alloys with lead. This results in an offset of the milled cavity and negatively impacts tool guidance in the subsequent broaching process. Therefore, the geometric tolerances cannot be met. In this paper, the effect of tool geometry and cutting parameters on the workpiece geometry in plunge milling is investigated. The effect of the microstructure of the work-piece materials CuZn37, CuZn42 and CuZn21Si3P on the tool deflection and cutting force components is examined. The tools used vary regarding the design of the corner in terms of the corner chamfer and the inner shaft thickness. Friction between chips in the tools inner flutes and the cavity walls reduced workpiece accuracy. Improvements were achieved by reducing the width of the cutting corner chamfers, using large inner flutes and applying low cutting parameters.


Author(s):  
Felicia Stan ◽  
Daniel Vlad ◽  
Catalin Fetecau

This paper presents an experimental investigation of the cutting forces response during the orthogonal cutting of polytetrafluoroethylene (PTFE) and PTFE-based composites using the Taguchi method. Cutting experiments were conducted using the L27 orthogonal array and the effects of the cutting parameters (feed rate, cutting speed and rake angle) on the cutting force were analyzed using the S/N ratio response and the analysis of variance (ANOVA). Statistical models that correlate the cutting force with process variables were developed using ANOVA and polynomial regression. The variation of the apparent friction coefficient was analyzed with respect to tool geometry and the cutting process. The results indicated that cutting and thrust forces increase with increasing feed rate, and decrease with increasing rake angles from negative to positive values and increasing cutting speed. A power law relationship between the apparent friction coefficient and the normal force exerted by the chip on the tool-rake face was identified, the former decreasing with an increasing normal force.


Sign in / Sign up

Export Citation Format

Share Document