A Room Temperature Hydrogen Sensor With High Sensitivity and Selectivity Using Nanocrystalline Semiconductor Particles

Author(s):  
Peng Zhang ◽  
Satyajit Shukla ◽  
Larry Ludwig ◽  
Hyoung J. Cho ◽  
Sudipta Seal

Micro hydrogen sensor with interdigitated electrodes and indium doped nanopolycrystalline SnO2 particles was fabricated and tested. Giant sensitivity as high as 105 with good repeatability and recovery was observed. The sensor showed an excellant selectivity of hydrogen (H2) sensing over helium (He).

RSC Advances ◽  
2015 ◽  
Vol 5 (92) ◽  
pp. 75098-75104 ◽  
Author(s):  
Xinghua Chang ◽  
Mi Peng ◽  
Junfeng Yang ◽  
Teng Wang ◽  
Yu liu ◽  
...  

A light activated miniature formaldehyde sensor working at room temperature is fabricated by CdSO4 modified ZnO nanoparticles.


2019 ◽  
Vol 803 ◽  
pp. 120-123
Author(s):  
Xiong Bang Wei ◽  
Guo Dong Lv ◽  
Xiao Hui Yang ◽  
Tao Wu ◽  
Dong Shi ◽  
...  

In this paper, a kind of novel TiO2 nanotube arrays (TNTs) hybrid structure was presented to improve the performance of hydrogen sensors. In this novel structure, palladium functionalized TNTs hybrid nanostructure supported on titanium wire. TNTs arrays was prepared by anodizing Ti wire using a standard electrochemical procedure. Pd nanomaterials were deposited on TNTs. Optimized experiments showed the hydrogen sensor supported on titanium wire showed a good response time of 8 s and high sensitivity of 94.8% at 1.9 vol% H2 at room temperature (25 °C). The research work revealed potential good hydrogen sensitivity of this kind of hybrid nanostructure.


2006 ◽  
Vol 20 (28) ◽  
pp. 1781-1787
Author(s):  
KAO-FENG YARN

Experimental formation of LPO (liquid phase oxidation)-grown InGaP native oxide near room temperature (~60° C ) is demonstrated. A high oxidation rate is obtained and checked by SEM and AES. The native oxide is determined to be composed of InPO 4 and Ga 2 O 3, analyzed by the results of XPS measurement. Due to the presence of the excellent quality of InGaP native oxide, high hydrogen ( H 2) sensitivity in output current of a Pd /oxide/ InGaP MOS Schottky diode is observed. Under the applied voltage of -1 V and 50 ppm H 2/air, a high sensitivity of 1090 is obtained. An obvious variation of output current and a short response time due to the exposure to different H 2 concentration are also achieved. For example, the adsorption (τa) and desorption (τb) time constants under 50 ppm H 2/air are 2.3 s and 2.7 s, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6475
Author(s):  
Jiahui Guo ◽  
Weiwei Li ◽  
Xuanliang Zhao ◽  
Haowen Hu ◽  
Min Wang ◽  
...  

Semiconducting metal oxides can detect low concentrations of NO2 and other toxic gases, which have been widely investigated in the field of gas sensors. However, most studies on the gas sensing properties of these materials are carried out at high temperatures. In this work, Hollow SnO2 nanofibers were successfully synthesized by electrospinning and calcination, followed by surface modification using ZnO to improve the sensitivity of the SnO2 nanofibers sensor to NO2 gas. The gas sensing behavior of SnO2/ZnO sensors was then investigated at room temperature (~20 °C). The results showed that SnO2/ZnO nanocomposites exhibited high sensitivity and selectivity to 0.5 ppm of NO2 gas with a response value of 336%, which was much higher than that of pure SnO2 (13%). In addition to the increase in the specific surface area of SnO2/ZnO-3 compared with pure SnO2, it also had a positive impact on the detection sensitivity. This increase was attributed to the heterojunction effect and the selective NO2 physisorption sensing mechanism of SnO2/ZnO nanocomposites. In addition, patterned electrodes of silver paste were printed on different flexible substrates, such as paper, polyethylene terephthalate and polydimethylsiloxane using a facile screen-printing process. Silver electrodes were integrated with SnO2/ZnO into a flexible wearable sensor array, which could detect 0.1 ppm NO2 gas after 10,000 bending cycles. The findings of this study therefore open a general approach for the fabrication of flexible devices for gas detection applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 2687-2694 ◽  
Author(s):  
Shouli Bai ◽  
Yaqiang Ma ◽  
Ruixian Luo ◽  
Aifan Chen ◽  
Dianqing Li

A smart sensor based on PANI–WO3 nanocomposite loaded on PET thin film not only exhibits high sensitivity and selectivity to triethylamine at room temperature, but also has flexibility, simple fabrication and portable characters.


2017 ◽  
Vol 87 ◽  
pp. 693-700 ◽  
Author(s):  
Daysi Diaz-Diestra ◽  
Bibek Thapa ◽  
Juan Beltran-Huarac ◽  
Brad R. Weiner ◽  
Gerardo Morell

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue-Yu Zhang ◽  
Ren-Hao Ma ◽  
Ling-Sheng Li ◽  
Li Fan ◽  
Yue-Tao Yang ◽  
...  

AbstractIt is challenging to increase the sensitivity of a hydrogen sensor operating at room temperature due to weak sorption and tiny mass of hydrogen. In this work, an ultrasonic sensor is presented for detecting hydrogen, which is composed of a 128° YX-LiNbO3 substrate and a reduced graphene oxide (RGO) sensitive layer with a platinum catalyzer. By optimizing the depositing parameters of RGO and platinum, a considerably high sensitivity is achieved at room temperature. A frequency shift of 308.9 kHz is obtained in 100 ppm hydrogen mixed with argon, and a frequency shift of 24.4 kHz is obtained in 1000 ppm hydrogen mixed in synthetic air. It is demonstrated that in addition to strong sorption of the sensitive layer, the coaction of mass load and conductivity variation is key to high sensitivity of the sensor. By establishing the original conductivity of the sensitive layer within the “conductivity window” for enhancing electrical response, we improve the sensitivity of the ultrasonic sensor, which is available for detecting hydrogen with an extremely low concentration of 5 ppm.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1429
Author(s):  
Bei Wang ◽  
Ling Sun ◽  
Martin Schneider-Ramelow ◽  
Klaus-Dieter Lang ◽  
Ha-Duong Ngo

Safety is a crucial issue in hydrogen energy applications due to the unique properties of hydrogen. Accordingly, a suitable hydrogen sensor for leakage detection must have at least high sensitivity and selectivity, rapid response/recovery, low power consumption and stable functionality, which requires further improvements on the available hydrogen sensors. In recent years, the mature development of nanomaterials engineering technologies, which facilitate the synthesis and modification of various materials, has opened up many possibilities for improving hydrogen sensing performance. Current research of hydrogen detection sensors based on both conservational and innovative materials are introduced in this review. This work mainly focuses on three material categories, i.e., transition metals, metal oxide semiconductors, and graphene and its derivatives. Different hydrogen sensing mechanisms, such as resistive, capacitive, optical and surface acoustic wave-based sensors, are also presented, and their sensing performances and influence based on different nanostructures and material combinations are compared and discussed, respectively. This review is concluded with a brief outlook and future development trends.


2018 ◽  
Vol 44 (6) ◽  
pp. 6904-6911 ◽  
Author(s):  
Mohsen Ahmadipour ◽  
Nik Akmar Rejab ◽  
Mohd Fariz Ab Rahman ◽  
Mohd Fadzil Ain ◽  
Zainal Arifin Ahmad

Sign in / Sign up

Export Citation Format

Share Document