Stress Analysis of a Novel MEMS Microphone Chip Using Finite Element Analysis

Author(s):  
Jia Gao ◽  
Ronald N. Miles ◽  
Weili Cui

Residual stress produces major challenges in the fabrication of MEMS devices. This is particularly true in the development of MEMS microphones since the response of the thin sound-sensitive diaphragm is strongly affected by stress. It is important to predict the effects of fabrication stress on the microphone chip and identify the failure modes to ensure a satisfactory fabrication yield. In this study, a finite element model of the microphone chip is developed to analyze the laminated structure under different fabrication stresses. The model of the microphone chip includes the diaphragm, backplate and sacrificial oxide layers on top of the silicon substrate. Fabrication stresses are included through the use of an equivalent thermal stress. The stresses in the different layers have been estimated based on measurements performed on fabricated test structures. The estimated stresses are simulated in the finite element model. An important factor in determining the process reliability is the compressive stress of the low temperature sacrificial oxide layer (LTO). A variety of stress combinations between different layers with the low temperature oxide layer are investigated. It is found that an adequate level of tensile stress in the backplate is crucial to ensure the fabrication yield. In the designs considered here, silicon nitride in combination with a thin conductive layer is identified as a favorable material for the backplate considering its high modulus and tensile stress in ‘as deposited’ film. In addition, the presence of a LTO layer on the backside of the wafer turns out to be very helpful in reducing the deflection of the unreleased chip and the stress in the diaphragm. In the case where there is a net compressive stress in the laminate, the failure mode is identified by nonlinear analysis. This analysis provides a guideline to select robust materials and tune the fabrication process to ensure a satisfactory fabrication yield.

2019 ◽  
Vol 136 ◽  
pp. 04037
Author(s):  
Yang Cai ◽  
Chongwei Huang ◽  
Xi Chen ◽  
Yu Sun ◽  
Dandan Guo

Aiming at horizontal and vertical uncoordinated deformation formation in Tram Subgrade, a 3D finite element model was established, which was used to analyse the mechanical response of tram monolithic roadbed on multiple depth and width of uncoordinated deformation. The results show that the uncoordinated deformation’s depth has little influence on the mechanical behavior of roadbed, and it indicates that there was remainder disengaging under the monolithic roadbed by the load of tram. On the other side, the width of uncoordinated deformation has a remarkable effect on outstanding to the horizontal tensile stress (σdy) in the slab bottom, deflection (Dd) on the top of slab, compressive stress (σsz) on the top of soil, and deflection (Dss) on the top of soil. The deflection on the top of subgrade surface is about 1.61mm. Therefore, the designer’s attention should be paid to avoid uncoordinated deformation width in the project, and avoid destroy of monolithic slab.


2021 ◽  
pp. 136943322110073
Author(s):  
Yu Cheng ◽  
Yuanlong Yang ◽  
Binyang Li ◽  
Jiepeng Liu

To investigate the seismic behavior of joint between special-shaped concrete-filled steel tubular (CFST) column and H-section steel beam, a pseudo-static test was carried out on five specimens with scale ratio of 1:2. The investigated factors include stiffening types of steel tube (multi-cell and tensile bar) and connection types (exterior diaphragm and vertical rib). The failure modes, hysteresis curves, skeleton curves, stress distribution, and joint shear deformation of specimens were analyzed to investigate the seismic behaviors of joints. The test results showed the connections of exterior diaphragm and vertical rib have good seismic behavior and can be identified as rigid joint in the frames with bracing system according to Eurocode 3. The joint of special-shaped column with tensile bars have better seismic performance by using through vertical rib connection. Furthermore, a finite element model was established and a parametric analysis with the finite element model was conducted to investigate the influences of following parameters on the joint stiffness: width-to-thickness ratio of column steel tube, beam-to-column linear stiffness ratio, vertical rib dimensions, and axial load ratio of column. Lastly, preliminary design suggestions were proposed.


Author(s):  
S.-F. Ling ◽  
X. Li ◽  
Z. Sun

Ultrasonic welding is one of the most popular techniques for joining thermoplastics and plays an important role in MEMS applications such as fabrication and packaging of MEMS devices. In this paper, an attempt was made to further understand the heating mechanism during ultrasonic welding. Firstly, the equation governing heat generation was derived assuming adiabatic heating. A thermal equivalent circuit model was also developed to describe the heat transfer process from the joint interface into the surroundings, and the governing equation of temperature distribution in the welding sample was deduced. Finite element method was then engaged to solve these equations to reveal the transient heating behaviour. Lastly, temperatures of the joint interface and the point adjacent to the joint were measured. The temperatures of the point adjacent to the joint calculated from finite element model are matched well with the experimental results. Based on the correlation, the temperature distributions of welding samples can be derived from the finite element model. Since the new developed model can be used to obtain the dynamic temperature distributions of welding samples during ultrasonic welding, the model provides an effective way for detailed understanding of the thermal behaviours and monitoring of the ultrasonic welding process.


Author(s):  
Ying Yue ◽  
Walter Villanueva ◽  
Hongdi Wang ◽  
Dingqu Wang

Abstract Vessel penetrations are important features of both pressurized water reactors and boiling water reactors. The thermal and structural behaviour of instrumentation guide tubes (IGTs) and control rod guide tubes (CRGTs) during a severe accident is vital in the assessment of the structure integrity of the reactor pressure vessel. Penetrations may fail due to welding failure, nozzle rupture, melt-through, etc. It is thus important to assess the failure mechanisms of penetrations with sufficient details. The objective of this paper is to assess the timing and failure modes of IGTs at the lower head during a severe accident in a Nordic boiling water reactor. In this study, a three-dimensional local finite element model was established using Ansys Mechanical that includes the vessel wall, the nozzle, and the weld joint. The thermo-mechanical loads of the finite element model were based on MELCOR results of a station blackout accident (SBO) combined with a large-break loss-of-coolant accident (LBLOCA) including an external vessel cooling by water as a severe accident management strategy. Given the temperature, creep strain, elastic strain, plastic strain, stress and displacement from the ANSYS simulations, the results showed the timing and failure modes of IGTs. Failure of the IGT penetration by nozzle creep is found to be the dominant failure mode of the vessel. However, it was also found that the IGT is clamped by the flow limiter before the nozzle creep, which means that IGT ejection is unlikely.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 591
Author(s):  
Karel A. van Laarhoven ◽  
Bas A. Wols

The failure of joints plays an important role in the overall performance of mains. One of the prevalent failure modes at polyvinyl chloride (PVC) joints is the rupture of pipe or joint, which may occur due to high angular deflection of the pipe with respect to the joint, caused by differential soil settlement. The present paper reports the construction and use of a finite element model to determine the maximum angular deflection of a variety of PVC joints in different loading situations. The resulting acceptable deflections vary between 3° and 8° per side, which differs significantly from installation guidelines. The results will support drinking water companies in substantiating the prioritization of maintenance and inspection.


Author(s):  
Daniel E. Jordy ◽  
Mohammad I. Younis

Squeeze film damping has a significant effect on the dynamic response of MEMS devices that employ perforated microstructures with large planar areas and small gap widths separating them from the substrate. Perforations can alter the effect of squeeze film damping by allowing the gas underneath the device to easily escape, thereby lowering the damping. By decreasing the size of the holes, the damping increases and the squeeze film damping effect increases. This can be used to minimize the out-of-plane motion of the microstructures toward the substrate, thereby minimizing the possibility of contact and stiction. This paper aims to explore the use of the squeeze-film damping phenomenon as a way to mitigate shock and minimize the possibility of stiction and failure in this class of MEMS devices. As a case study, we consider a G-sensor, which is a sort of a threshold accelerometer, employed in an arming and fusing chip. We study the effect of changing the size of the perforation holes and the gap width separating the microstructure from the substrate. We use a multi-physics finite-element model built using the software ANSYS. First, a modal analysis is conducted to calculate the out-of-plane natural frequency of the G-sensor. Then, a squeeze-film damping finite-element model, for both the air underneath the structure and the flow of the air through the perforations, is developed and utilized to estimate the damping coefficients for several hole sizes. Results are shown for various models of squeeze-film damping assuming no holes, large holes, and assuming a finite pressure drop across the holes, which is the most accurate way of modeling. The extracted damping coefficients are then used in a transient structural-shock analysis. Finally, the transient shock analysis is used to determine the shock loads that induce contacts between the G-sensor and the underlying substrate. It is found that the threshold of shock to contact the substrate has increased significantly when decreasing the holes size or the gap width, which is very promising to help mitigate stiction in this class of devices, thereby improving their reliability.


2010 ◽  
Vol 132 (04) ◽  
pp. 44-48
Author(s):  
Lloyd Smith ◽  
James Sherwood

This article describes the equipment and technology advances in baseball and softball games. Research efforts are currently being pursued by the authors to develop a layer-by-layer finite element model of a baseball. While work on improved ball models is ongoing, a number of significant accomplishments have been made with current models. These include comparing bat performance, describing the plastic deformation (denting) observed in metal bats, and the failure modes observed with wood bats. To simulate the bat/ball impact at game-like speeds, a durability machine is used to fire balls at a bat at speeds up to 200 mph, at the rate of 10 per minute. After a ball is shot, it falls into a trough and is loaded back into the magazine, which holds up to 36 balls. The bat-support mechanism simulates the grip and flexibility of a batter and can be programmed to rotate the bat between hits to simulate the use of hollow bats or to remain “label up” as is needed for wood bats.


1997 ◽  
Vol 119 (1) ◽  
pp. 87-92 ◽  
Author(s):  
N. Yoganandan ◽  
S. Kumaresan ◽  
L. Voo ◽  
F. A. Pintar

In this study, a three-dimensional finite element model of the human lower cervical spine (C4-C6) was constructed. The mathematical model was based on close-up CT scans from a young human cadaver. Cortical shell, cancellous core, endplates, and posterior elements including the lateral masses, pedicle, lamina, and transverse and spinous processes, and the intervertebral disks, were simulated. Using the material properties from literature, the 10,371-element model was exercised under an axial compressive mode of loading. The finite element model response agreed with literature. As a logical step, a parametric study was conducted by evaluating the biomechanical response secondary to changes in the elastic moduli of the intervertebral disk and the endplates. In the stress analysis, the minimum principal compressive stress was used for the cancellous core of the vertebral body and von Mises stress was used for the endplate component. The model output indicated that an increase in the elastic modulii of the disk resulted in an increase in the endplate stresses at all the three spinal levels. In addition, the inferior endplate of the middle vertebral body responded with the highest mean compressive stress followed by its superior counterpart. Furthermore, the middle vertebral body produced the highest compressive stresses compared to its counterparts. These findings appear to correlate with experimental results as well as common clinical experience wherein cervical fractures are induced due to external compressive forces. As a first step, this model will lead to more advanced simulations as additional data become available.


2011 ◽  
Vol 90-93 ◽  
pp. 825-828
Author(s):  
Lei Zhao ◽  
Jian Zhong Yang ◽  
Jin Xin Zhao

The responses of the buried pipeline due to reverse fault dislocating are studied by a 3-dimension shell finite element model with equivalent boundary spring in ANSYS program. The calculating length of the model is determined by dip angle of the reverse fault: The length is 150 times pipe diameter when the angle is equal to or bigger than 45°; but the length is 240 times pipe diameter when the angle is less than 45°. The finite element model is fit for computing that dip angle is less than 80°. Results show: Failure modes of the pipes are determined by dip angle and dislocation value of the fault. When the angle is gentle and the dislocation is small, either local buckling(wrinkling) or beam buckling can be happened. The angle is equal to or bigger than 75°, local buckling and beam buckling can be happened at same time.


Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 247
Author(s):  
Jinlong Zhou ◽  
Linghua Dong ◽  
Weidong Yang

An active rotor with trailing-edge flaps is an effective approach to alleviate vibrations and noise in helicopters. In this study, a compact piezoelectric actuator is proposed to drive trailing-edge flaps. The two groups of piezoelectric stacks accommodated in the actuator operate in opposition, and double-acting output can be realized through the differential motion of these stacks. A theoretical model and a finite element model are established to predict the output capability of this actuator, and structural optimization is performed using the finite element model. A prototype is built and tested on a benchtop to assess its performance. Test results demonstrate that the actuator stiffness reaches 801 N/mm, and its output stroke is up to ± 0.27 mm when subjected to actuation voltage of 120 V. Agreement between measurements and simulations validates the accuracy of the established models. In addition, actuator outputs in failure modes are measured by canceling the supply voltage of one group of piezoelectric stacks. In this condition, the actuator can still generate acceptable outputs, and the initial position of the output end remains unchanged. Simulations and test results reveal that the proposed actuator achieves promising performance, and it is capable to be applied to a helicopter active rotor.


Sign in / Sign up

Export Citation Format

Share Document