The Surface Plasmon Scattering Patterns of Gold Nanoparticles and Agglomerates

Author(s):  
Pradeep Garudadri Venkata ◽  
Mustafa M. Aslan ◽  
M. Pinar Mengu¨c ◽  
Gorden Videen

Metallic nanoparticles display considerably different optical properties than those of their bulk counterparts. They have long been of interest in several novel applications, from colored glass production of medieval times to molecular-level sensors of today. Recently, there has been significant interest in characterization of such small particles via surface plasmons, for example for monitoring of the actual self-assembly purposes. For such characterization, we need scattering patterns by different type of particles and agglomerates on or near the surface. Here we present a methodology to predict the required scattering patterns of single particles and agglomerates on or near a surface subjected to surface plasmon waves. We investigate the effect of size, shape and orientation of gold nano particles on their scattering patterns both in the visible spectrum and at resonance wavelengths. The results show that the normalized scattering matrix elements (Mij) at certain observation angles and incident wavelengths provide significant information to monitor self-assembly process of gold nanoparticles on a gold substrate.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Floris Dekker ◽  
Lars Kool ◽  
Anton Bunschoten ◽  
Aldrik H. Velders ◽  
Vittorio Saggiomo

AbstractMetallic nanoparticles are small particles, with dimensions of less than 100 nm, which have unique characteristics. For example, the color of a nanoparticle solution is given by the surface plasmon resonance, in contrast to only absorbance of a molecule. Metallic nanoparticles have been used in the antiquity for the production of colored glass. Many of the medieval cathedral red windows are in fact, stained with gold nanoparticles. However, presenting just a red solution to a class and explaining that the solution contains gold nanoparticles can be disappointing as the red color can be obtained in many different ways without the need of nanoparticles. Something peculiar, like dichroism, can, on the other hand, shine the interest of an observer to the “nano-world”. Dichroic nanoparticles show different colors when illuminated from the front (scattering) or from the back (transmission). This effect is unique for nanoparticles and nanostructures in general and can generate the “WOW” effect in class or during public demonstrations. In this article we present a simple synthesis of dichroic silver and gold nanoparticles. Solutions of such nanoparticles are a stunning visual media for demonstrations, outreach and engaging audience in the “nano”world.


2017 ◽  
Vol 13 (2) ◽  
pp. 4671-4677 ◽  
Author(s):  
A. M. Abdelghany ◽  
A.H. Oraby ◽  
Awatif A Hindi ◽  
Doaa M El-Nagar ◽  
Fathia S Alhakami

Bimetallic nanoparticles of silver (Ag) and gold (Au) were synthesized at room temperature using Curcumin. Reduction process of silver and gold ions with different molar ratios leads to production of different nanostructures including alloys and core-shells. Produced nanoparticles were characterized simultaneously with FTIR, UV/vis. spectroscopy, transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDAX). UV/vis. optical absorption spectra of as synthesized nanoparticles reveals presence of surface palsmon resonance (SPR) of both silver at (425 nm) and gold at (540 nm) with small shift and broadness of gold band after mixing with resucing and capping agent in natural extract which suggest presence of bimetallic nano structure (Au/Ag). FTIR and EDAX data approve the presence of bimetallic nano structure combined with curcumin extract. TEM micrographs shows that silver and gold can be synthesized separately in the form of nano particles using curcumin extract. Synthesis of gold nano particles in presence of silver effectively enhance and control formation of bi-metallic structure.


2014 ◽  
Vol 7 (2) ◽  
pp. 267-273
Author(s):  
苏彦勋 SU Yen-hsun ◽  
柯沅锋 KE Yuan-feng ◽  
蔡士良 CAI Shi-liang ◽  
姚芊瑜 YAO Qian-yu ◽  
徐嘉妘 XYU Jia-yun ◽  
...  

2020 ◽  
Vol 10 (14) ◽  
pp. 4904
Author(s):  
Mrinal Thakur ◽  
Justin Van Cleave

Electroabsorption in metallic nanoparticles within transparent dielectric media has been measured. In particular, gold nanoparticles in glass and subnanometer-size metallic domains in iodine doped nonconjugated conductive polymer have been studied. Measurements have been made for applied ac fields at 4 kHz, at a wavelength close to the onset of the surface plasmon resonance. The measured electroabsorption (imaginary part of χ(3) or Kerr coefficient) has a quadratic dependence on electric field. Its magnitudes were compared for different sizes of the metallic nanoparticles down to the subnanometer-size particles in iodine-doped nonconjugated conductive polymer. As in the case of quadratic electro-optic effect reported earlier, electroabsorption has approximately a 1/d3 dependence, d being the diameter of nanoparticle. This is consistent with existing theories on confined metallic systems.


2006 ◽  
Vol 17 (11) ◽  
pp. 2821-2827 ◽  
Author(s):  
Yong Yang ◽  
Shigemasha Matsubara ◽  
Masayuki Nogami ◽  
Jianlin Shi ◽  
Weiming Huang

2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Wan-Joong Kim ◽  
JaeTae Seo ◽  
Chil Seong Ah ◽  
Jasmine Austin ◽  
Shanghee Kim ◽  
...  

Gold nanoparticles exhibited strong surface plasmon absorption and couplings between neighboring particles within bioactivated self-assembly modified their optical properties. Colorimetric analysis on the optical modification of surface plasmon resoanance (SPR) shift and flocculation parameter functionalized bioinspired gold assembly for biophotonic application. The physical origin of bioinspired gold aggregation-induced shifting, decreasing, or broadening of the plasmon absorption spectra could be explained in terms of dynamic depolarization, collisional damping, and shadowing effects.


2011 ◽  
Vol 1303 ◽  
Author(s):  
Sun Choi ◽  
Albert P. Pisano ◽  
Tarek I. Zohdi

ABSTRACTWe develop a novel patterning technique to create 3D patterns of micro, nanoparticle assembly via evaporative self-assembly based on confinement/release of micro/nano particles assembly based on the coffee-ring effect of evaporating suspension. Based on the presented technique, we demonstrate that the patterns of 3D assembly of various sizes of microparticles (Silica), metal oxide nanoparticles (TiO2, ZnO) and metallic nanoparticles (Ag) can be successfully generated by low-concentrated particle suspension (1.25 wt % ~ 5 wt %) without additional sintering steps and we also show the geometries of the patterns can be finely controlled by adjusting the parameters of the process.


2017 ◽  
Vol 9 (2) ◽  
pp. 45 ◽  
Author(s):  
Cataldi Ugo ◽  
Buergi Thomas

We report the mechanical control of plasmonic coupling between gold nanoparticles (GNPs) coated onto a large area wrinkled surface of an elastomeric template. Self-assembly and bottom-up procedures, were used to fabricate the sample and to increase the size of GNPs by exploiting the reduction of HAuCl4 with hydroxylamine. The elastic properties of template, the increase of nanostructure size joined with the particular grating configuration of the surface have been exploited to trigger and handle the coupling processes between the nanoparticles. Full Text: PDF ReferencesG. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen", Ann. Phys. 25, 377 (1908) CrossRef U. Kreibig and M. Vollmer, Optical properties of metal cluster, Berlin 1995 CrossRef S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007 CrossRef L. A. Lane, X. Qian, and S. Nie, "SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging", Chem. Rev. 115, 10489-10529 (2015) CrossRef N. Pazos-Perez, W. Ni, A. Schweikart, R. A. Alvarez-Puebla, A. Fery and L. M. Liz-Marzan, "Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids", Chem. Sci. 1, 174-178P (2010) CrossRef M. Aioub and M. A. El-Sayed, "A Real-Time Surface Enhanced Raman Spectroscopy Study of Plasmonic Photothermal Cell Death Using Targeted Gold Nanoparticles", J. Am. Chem. Soc. 138, 1258-1264 (2016) CrossRef G. Baffou, and R. Quidant, "Thermo-plasmonics: using metallic nanostructures as nano-sources of heat", Laser Photonics Rev. 7, No. 2, 171-187 (2013) CrossRef G. Palermo, U. Cataldi, L. De Sio, T. Beurgi, N. Tabiryan, and C. Umeton, "Optical control of plasmonic heating effects using reversible photo-alignment of nematic liquid crystals", Applied Physics 109, 191906 (2016) CrossRef J. R. Dunklin, G. T. Forcherio, K. R. Berry, Jr., and D. K. Roper, "Gold Nanoparticle Polydimethylsiloxane Thin Films Enhance Thermoplasmonic Dissipation by Internal Reflection", J. Phys. Chem. 118, 7523-7531 (2014) CrossRef Y. Jin, "Engineering Plasmonic Gold Nanostructures and Metamaterials for Biosensing and Nanomedicine", Adv. Mater. 24, 5153-5165 (2012) CrossRef J. H. Lee, Q. Wu, and W. Park, "Metal nanocluster metamaterial fabricated by the colloidal self-assembly", Optics Letters 34, Issue 4, 443-445 (2009) CrossRef R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, "Tunable optical metamaterial based on liquid crystal-gold nanosphere composite", Optics Express 17, Issue 22, 19459-19469 (2009) CrossRef J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, "A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles", Optical Materials Express 2, Issue 3, 269-278 (2012) CrossRef T. Maurer, J. Marae-Djouda, U. Cataldi, A. G., Guillaume Montay, Y. Madi, B. Panicaud, D. Macias, P.-M. Adam, G. Léveque, T. Buergi, and R. Caputo, "The beginnings of plasmomechanics: towards plasmonic strain sensors", Front. Mater. Sci. 9(2) (2015) CrossRef J. N. Anker W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. Van Duyne, "Biosensing with plasmonic nanosensors", Nature Materials 7, 442 - 453 (2008) CrossRef M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers,and R. G. Nuzzo, "Nanostructured Plasmonic Sensors", Chem. Rev. 108, 494-521 (2008) CrossRef P. K. Jain , M. A. El-Sayed, "Plasmonic coupling in noble metal nanostructures", Chemical Physics Letters 487, 153-164 (2010) CrossRef P. K. Jain, W. Huang and M. A. El-Sayed, "On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation", Nano Letters 7, 2080-2088 (2007) CrossRef U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton and T. Buergi, "Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling", Journal of Materials Chemistry C 2(37), 7927-7933 (2014). CrossRef S. K. Ghosh and T. Pal, "Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications", Chem. Rev. 107, 4797 (2007) CrossRef M. K. Kinnan and G. Chumanov, "Plasmon Coupling in Two-Dimensional Arrays of Silver Nanoparticles: II. Effect of the Particle Size and Interparticle Distance", J. Phys. Chem. C 114, 7496 (2010) CrossRef X. L. Zhu, S. S. Xiao, L. Shi, X. H. Liu, J. Zi, O. Hansen and N. A. Mortensen, "A stretch-tunable plasmonic structure with a polarization-dependent response", Opt. Express, 20, 5237 (2012) CrossRef K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith and S. Schultz, "Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles", Nano Lett. 3, 1087 (2003) CrossRef Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih and Y. F. Chen, "Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite", Appl. Phys. Lett. 96, 041904 (2010) CrossRef N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, "The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer", Appl. Phys. Lett. 75(17) (1999) CrossRef R, A. Lawton, C. R. Price, A. F. Runge, Walter J. Doherty III, S. Scott Saavedra , "Air plasma treatment of submicron thick PDMS polymer films: effect of oxidation time and storage conditions", Colloids and Surfaces A: Physicochem. Eng. Aspects 253, 213-215 (2005). CrossRef A Schweikart, N. Pazos-Perez, R. A. Alvarez-Puebla and A. Fery, "Controlling inter-nanoparticle coupling by wrinkle-assisted assembly", Soft Matter 7, 4093 (2011) CrossRef K. R. Brown, L. A. Lyon, A. P. Fox, B. D. Reiss and M. J. Natan, "Hydroxylamine Seeding of Colloidal Au Nanoparticles. 3. Controlled Formation of Conductive Au Films", Chem. Mater. 12, 314 (2000) CrossRef


Sign in / Sign up

Export Citation Format

Share Document