The Stick Motion of a Harmonically Excited, Friction-Induced Oscillator on a Sinusoidally Traveling Surface

Author(s):  
Albert C. J. Luo ◽  
Brandon C. Gegg ◽  
Steve S. Suh

In this paper, the methodology is presented through investigation of a periodically, forced linear oscillator with dry friction, resting on a traveling surface varying with time. The switching conditions for stick motions in non-smooth dynamical systems are obtained. From defined generic mappings, the corresponding criteria for the stick motions are presented through the force product conditions. The analytical prediction of the onset and vanishing of the stick motions is illustrated. Finally, numerical simulations of stick motions are carried out to verify the analytical prediction. The achieved force criteria can be applied to the other dynamical systems with nonlinear friction forces possessing a CO - discontinuity.

Author(s):  
Albert C. J. Luo ◽  
Brandon C. Gegg

In this paper, the switching conditions for sliding motions in a periodically, forced linear oscillator with dry friction are obtained analytically. The generic mappings for the friction-induced oscillator are introduced. From the generic mappings, the corresponding criteria for the sliding motions are presented through the force product conditions. The analytical prediction of the onset and vanishing of the sliding motions is illustrated. Finally, numerical simulations of sliding motions are carried out to verify the analytical prediction.


2005 ◽  
Vol 128 (1) ◽  
pp. 97-105 ◽  
Author(s):  
Albert C. J. Luo ◽  
Brandon C. Gegg

In this paper, the dynamics mechanism of stick and nonstick motion for a dry-friction oscillator is discussed. From the theory of Luo in 2005 [Commun. Nonlinear Sci. Numer. Simul., 10, pp. 1–55], the conditions for stick and nonstick motions are achieved. The stick and nonstick periodic motions are predicted analytically through the appropriate mapping structures. The local stability and bifurcation conditions for such periodic motions are obtained. The stick motions are illustrated through the displacement, velocity, and force responses. This investigation provides a better understanding of stick and nonstick motions of the linear oscillator with dry friction. The methodology presented in this paper is applicable to oscillators with nonlinear friction forces.


Author(s):  
František Peterka

Abstract The motion with impacts and dry friction forces appears in some mechanical systems as mechanisms with clearances, (e.g., in gearings, pins, slots, guides, valve gears etc.), impact dampers, relays, forming and mailing machines, power pics etc. Such mechanisms include one or more pairs of impacting bodies, which introduce the strong nonlinearity into the system motion. The motion of the general pair of bodies with the both-sides impacts and dry friction forces is assumed (Fig.1). It can be the part of a more complex chain of masses in the mechanical system. Dead zones in the relative motion of bodies can be caused by assumed nonlinearities. The mathematical conditions controlling the numerical simulations or analytical solution of the motion are introduced. The application of this method is explained by the study of the influence of dry friction force on amplitude-frequency characteristics of four types of dynamical and impact dampers with optimised parameters.


Author(s):  
Albert C. J. Luo ◽  
Brandon C. Gegg

In this paper, the dynamics mechanism of stick and non-stick motion for a dry-friction oscillator is discussed. From the theory of Luo in 2004, the conditions for stick and non-stick motions are achieved. The stick and non-stick periodic motions are predicted analytically through the appropriate mapping structures. The local stability and bifurcation for such periodic motions are obtained. The stick motions are illustrated through the displacement, velocity and force responses. This investigation provides a better understanding of stick and nonstick motions of the linear oscillator with dry-friction. The methodology presented in this paper is applicable to oscillators with non-linear friction forces.


2009 ◽  
Vol 01 (02) ◽  
pp. 305-326 ◽  
Author(s):  
KUNPENG ZHANG ◽  
QIAN DING

The dynamics of a rotor system with axial contact/rub events between the disks and stator are investigated by numerical simulations. The formula for determining the contact/rub points, axial contact forces and dry friction forces are deduced. To account for their influence, the axial contact forces are substituted by equivalent forces acting at the disk centers, based on the equivalent moment rule. One-parametric model is used to estimate the contact-induced dry friction forces. The coupled equations of lateral and torsional motions of rotor and the lateral motion of disk are then established. Numerical simulations are carried out to reveal the lateral and torsional vibrations for both two-disk contact/rubs with different axial clearances, and one disk contact/rubs. Bifurcation diagrams, orbits, phase portraits, amplitude-frequency spectra and Poincaré maps are adopted to demonstrate the dynamical behaviors of the system. The results show that though both the lateral and torsional vibrations can reflect the influences of contact/rubs on rotor dynamics, the spectrum analyses of the torsional vibrations are more suitable to determine straight the extent of their effect.


2020 ◽  
Vol 23 (2) ◽  
pp. 553-570 ◽  
Author(s):  
Li Ma

AbstractThis paper is devoted to the investigation of the kinetics of Hadamard-type fractional differential systems (HTFDSs) in two aspects. On one hand, the nonexistence of non-trivial periodic solutions for general HTFDSs, which are considered in some functional spaces, is proved and the corresponding eigenfunction of Hadamard-type fractional differential operator is also discussed. On the other hand, by the generalized Gronwall-type inequality, we estimate the bound of the Lyapunov exponents for HTFDSs. In addition, numerical simulations are addressed to verify the obtained theoretical results.


2017 ◽  
Vol 87 (5) ◽  
pp. 783-784
Author(s):  
Jan Awrejcewicz ◽  
Nuno Maia ◽  
Jerzy Mrozowski

Author(s):  
Wayne E. Whiteman ◽  
Aldo A. Ferri

Abstract The dynamic behavior of a beam-like structure undergoing transverse vibration and subjected to a displacement-dependent dry friction force is examined. In Part I, the beam is modeled by a single mode while Part II considers multi-mode representations. The displacement dependence in each case is caused by a ramp configuration that allows the normal force across the sliding interface to increase linearly with slip displacement. The system is studied first by using first-order harmonic balance and then by using a time integration method. The stick-slip behavior of the system is also studied. Even though the only source of damping is dry friction, the system is seen to exhibit “viscous-like” damping characteristics. A strong dependence of the equivalent natural frequency and damping ratio on the displacement amplitude is an interesting result. It is shown that for a given set of parameter values, an optimal ramp angle exists that maximizes the equivalent damping ratio. The appearance of two dynamic response solutions at certain system and forcing parameter values is also seen. Results suggest that the overall characteristics of mechanical systems may be improved by properly configuring frictional interfaces to allow normal forces to vary with displacement.


2021 ◽  
pp. 2150313
Author(s):  
Jian-Ping Yu ◽  
Wen-Xiu Ma ◽  
Chaudry Masood Khalique ◽  
Yong-Li Sun

In this research, we will introduce and study the localized interaction solutions and th eir dynamics of the extended Hirota–Satsuma–Ito equation (HSIe), which plays a key role in studying certain complex physical phenomena. By using the Hirota bilinear method, the lump-type solutions will be firstly constructed, which are almost rationally localized in all spatial directions. Then, three kinds of localized interaction solutions will be obtained, respectively. In order to study the dynamic behaviors, numerical simulations are performed. Two interesting physical phenomena are found: one is the fission and fusion phenomena happening during the procedure of their collisions; the other is the rogue wave phenomena triggered by the interaction between a lump-type wave and a soliton wave.


Sign in / Sign up

Export Citation Format

Share Document