Bubble Departure and Convection in Large Aspect Ratio Microchannels

Author(s):  
David W. Fogg ◽  
Ching-Hsiang Cheng ◽  
Ken E. Goodson

The growth and departure of vapor bubbles governs pressure drop and thermal resistance of two-phase microchannel heat sinks. Little data is available for the growth, departure, and convection of bubbles in microchannels. The current study uses isothermal air injection to simulate the nucleation and growth of bubbles in high aspect microchannels with Dh≈48μm and aspect ratios from 20 to 40 with 1 < ReH < 10. Liquid pressure drop and flow rate are measured during bubble growth along with the time history of the bubble geometry obtained from a high speed video imaging system at rates up to 50,000 frames per second. Bubble departure is found to vary linearly with aspect ratio divided by inlet Reynolds number, while the convection velocity depends on the normalized bubble width and normalized liquid film thickness. A scaling analysis identifies the increase in axial pressure drop due to bubble confinement as the driving force for both bubble departure and convection.

1998 ◽  
Vol 120 (1) ◽  
pp. 74-80 ◽  
Author(s):  
J. Yang ◽  
D. C. Wiggert

A quasi-two-dimensional two-phase flow cylindrical model of slug motion in a voided line is developed that can reasonably predict the change of flow pattern of the slug, air entrainment, “holdup” and the distribution of axial velocity. However, when using the theory of incompressible momentum transfer to estimate the pressure-time history of slug at the elbow, the calculated results are not in good agreement with those of the experiments. Further analysis of the experimental results indicate that an acoustic, or waterhammerlike response may occur immediately upon impact of the high-speed slug with the elbow, and subsequently, the waveform exhibits momentum transfer due to the acceleration of the slug at the elbow.


Author(s):  
Chiwoong Choi ◽  
DongIn Yu ◽  
Moohwan Kim

Most microscale thermal hydraulic systems have been used rectangular microchannels. In a rectangular microchannel, most important parameter is an aspect ratio. In this study, glass rectangular microchannels were fabricated using MEMS (micro-electro-mechanical system) fabrication techniques with a photosensitive glass. The width of all channels is same to approximately 500 μm and the height of rectangular microchannel was changed. The hydraulic diameters of the rectangular microchannels were 490, 322 and 143 μm. Experiments of adiabatic two-phase flow in the rectangular microchannels were conducted using liquid water and nitrogen gas. Pressure drop was directly measured from embedded pressure ports. And the pressure drop results were compared with correlations. Visualization of flow patterns were achieved with a high-speed camera and a long-distance microscope. Bubble behaviors were analyzed using visualized images based on a unit cell concept. As the aspect ratio decreased, a confinement effect was increased. And the thickness of liquid film in the corner of the rectangular cross section was reduced with the aspect ratio decreased. This result affected all phenomena of two-phase flow in the rectangular microchannels.


Author(s):  
Ken Yamamoto ◽  
Satoshi Ogata

Visualization and pressure drop measurements of water–air two-phase flow in circular microchannels (d = 486 μm) was conducted. In order to investigate effects of the flow rates and T-junction size on the pressure drop of the two-phase slug flow, three test channels containing various T-junctions (136, 194, and 252 μm) were prepared. The measured pressure drop was compared with the results from semi-empirical model and theoretical model, and it was found that the experimental data generally agreed with the theoretical model. However, the pressure drop increased as the T-junction size decreased. In order to detect the causes of this increase in pressure drop, effects of the velocity fluctuation on the pressure drop were investigated. The velocity fluctuations were measured from the recorded images that were obtained by a high-speed camera. Although it was found that the instantaneous velocity fluctuated in large amplitudes and its cycle was synchronized with a period of the bubble pinch-off, the effects of the velocity fluctuation were negligible on the pressure drop. Finally, from a scaling analysis, it was suggested that the bubble overpressure was the cause of the increase in pressure drop.


Author(s):  
Namwon Kim ◽  
Estelle T. Evans ◽  
Steven A. Soper ◽  
Michael C. Murphy ◽  
Dimitris E. Nikitopoulos

This study addresses air-water, two-phase flows in micro-channels fabricated on poly-methyl-methacrylate (PMMA) with walls that are partially non-wetting (typical static contact angle 65° in stock form) and not molecularly smooth. Two different types of chips were prepared: Micro-milled micro-channels of aspect ratios 1, 2 and 3 with fixed hydraulic diameter on PMMA and micro-channels of unity aspect ratio replicated using hot embossing of PMMA with a micro-milled brass mold insert. Flow-maps obtained using the same gas-liquid injection geometry and method for the three aspect ratio micro-channels are presented, and regime boundaries are compared with those found by other investigations. The results indicate that the bubbly flow regime boundary is shifted to higher liquid and/or lower gas superficial velocities for the higher aspect ratio channels, while transition to the Annular and Annular-Dry regimes remains the same to within experimental uncertainty. The emphasis of what is presented is on the Segmented flow regime. Regular and irregular Segmented flow regimes of three types are assessed on the basis of the statistical variation in the associated phase length scales from flow observations over a substantial channel length. Comparison between results of the two different injection geometries and micro-channel manufacturing techniques indicate that feedback effects are a significant but not the only cause of segmented flow irregularity. The variability in the size of the liquid plug separating gas bubbles in Segmented flow is found to be substantially higher than that of the bubbles even when the flow is regular (low variability of bubble size). The average bubble length associated with a part of Segmented flows, regular and irregular alike is shown to scale approximately with the capillary number to the 2/3 power (liquid volumetric flow ratio to the −2/3). Irregular Segmented flow is favored by higher liquid superficial velocities, lower liquid volumetric flow ratios and lower channel aspect ratios. Of the three aspect ratios examined, the microchannel with aspect-ratio 3 displayed the broadest window of regular Segmented flow. Two-phase flow pressure drop was measured for test channels of unity aspect ratio. Each flow regime identified on the basis of topological observations is associated with different trends of the pressure drop variation with respect to volumetric flow ratio.


Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


Author(s):  
Hideo Ide ◽  
Eiji Kinoshita ◽  
Ryo Kuroshima ◽  
Takeshi Ohtaka ◽  
Yuichi Shibata ◽  
...  

Gas-liquid two-phase flows in minichannels and microchannels display a unique flow pattern called ring film flow, in which stable waves of relatively large amplitudes appear at seemingly regular intervals and propagate in the flow direction. In the present work, the velocity characteristics of gas slugs, ring films, and their features such as the gas slug length, flow phenomena and frictional pressure drop for nitrogen-distilled water and nitrogen-30 wt% ethanol water solution have been investigated experimentally. Four kinds of circular microchannels with diameters of 100 μm, 150 μm, 250 μm and 518 μm were used. The effects of tube diameter and physical properties, especially the surface tension and liquid viscosity, on the flow patterns, gas slug length and the two-phase frictional pressure drop have been investigated by using a high speed camera at 6,000 frames per second. The flow characteristics of gas slugs, liquid slugs and the waves of ring film are presented in this paper.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Mario Rosario Chiarelli ◽  
Salvatore Bonomo

The results of numerical studies carried out on high-aspect-ratio wings with different planforms are discussed: the transonic regime is analysed for a swept wing and a curved planform wing. The wings have similar aspect ratios and similar aerodynamic profiles. The analyses were carried out by CFD and FE techniques, and the reliability of the numerical aerodynamic results was proven by a sensitivity study. Analysing the performances of the two wings demonstrated that in transonic flight conditions, a noticeable drag reduction can be obtained by adopting a curved planform wing. In addition, for such a wing, the aeroelastic instability condition, consisting in a classical flutter, is postponed compared to a conventional swept wing, for which a flutter-buffet instability occurs. In a preliminary manner, the study shows that, for a curved planform wing, the high speed buffet is not an issue and at the same time notable fuel saving can be achieved.


Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 739 ◽  
Author(s):  
Hao Ma ◽  
Zhipeng Duan ◽  
Liangbin Su ◽  
Xiaoru Ning ◽  
Jiao Bai ◽  
...  

The flow in channels of microdevices is usually in the developing regime. Three-dimensional laminar flow characteristics of a nanofluid in microchannel plate fin heat sinks are investigated numerically in this paper. Deionized water and Al2O3–water nanofluid are employed as the cooling fluid in our work. The effects of the Reynolds number (100 < Re < 1000), channel aspect ratio (0 < ε < 1), and nanoparticle volume fraction (0.5% < Φ < 5%) on pressure drop and entropy generation in microchannel plate fin heat sinks are examined in detail. Herein, the general expression of the entropy generation rate considering entrance effects is developed. The results revealed that the frictional entropy generation and pressure drop increase as nanoparticle volume fraction and Reynolds number increase, while decrease as the channel aspect ratio increases. When the nanoparticle volume fraction increases from 0 to 3% at Re = 500, the pressure drop of microchannel plate fin heat sinks with ε = 0.5 increases by 9%. It is demonstrated that the effect of the entrance region is crucial for evaluating the performance of microchannel plate fin heat sinks. The study may shed some light on the design and optimization of microchannel heat sinks.


Author(s):  
Amin Jaberi ◽  
Mehran Tadjfar

The instability characteristics and flow structures of water jets injected from rectangular and elliptical nozzles with aspect ratios varying from 2 to 6 were experimentally studied and compared. Shadowgraph technique was employed for flow visualization, and structures on the liquid jet surface were captured using high speed photography. It was found that disturbances originating from the nozzle geometry initially perturbed the liquid column, and then, at high jet velocities, disturbances generated within the flow dominated the jet surface. It was also found that rectangular nozzles introduced more disturbances into the flow than the elliptical ones. The characteristic parameters of axis-switching phenomenon including wavelength, frequency, and amplitude were measured and compared. Axis-switching wavelength was found to increase linearly with Weber number. Also, the wavelengths of rectangular jets were longer than the elliptical jets. Further, the frequency of axis-switching was shown to be reduced with increase of both Weber number and aspect ratio. It was observed that the axis-switching amplitude increased monotonically, reached a peak, and then decreased gradually. It was also found that the axis-switching amplitude varied with Weber number. At lower values of Weber number, the rectangular nozzles had higher amplitude than the elliptical nozzles. However, at higher values of Weber number, this relation was reversed, and the elliptical nozzles had the higher axis-switching amplitudes. This reversal Weber number decreased with the orifice aspect ratio. The reversal Weber number for aspect ratio of 4 was about 289, and it had decreased to 144 for the aspect ratio of 6.


Author(s):  
C. T. Wang ◽  
C. P. Chang ◽  
C. K. Shaw ◽  
J. Y. Cheng

Fuel cells possessing high potency and low pollution are well known and are considered the new generation of power technology. This study presents a novel bionic concept flow slab design to improve fuel cell performance. A series of 2D simulations was executed at Re=10 and 100 for the bionic flow and traditional flow slabs. In addition, the effect of aspect ratio was studied using 3D simulation. Numerical results obtained show that this novel bionic flow slab design will exhibit better performance than traditional flow slabs regardless of Reynolds numbers and aspect ratios because it possesses a more uniform velocity and a lower pressure drop. Finally, the performance in the bionic flow slab’s reaction area was determined to be superior. These findings show that the bionic concept and flow slab design addressed in this paper will be useful in enhancing fuel cell performance.


Sign in / Sign up

Export Citation Format

Share Document