Simulation and Experimental Validation of a Magnetocaloric Microcooler

Author(s):  
Simone L. Ghirlanda ◽  
Sangchae Kim ◽  
Cesar F. Hernandez ◽  
Muhammad M. Rahman ◽  
Shekhar Bhansali

This research focuses on the simulation and experimental test and validation of a magnetocaloric microcooler that works under a small magnetic field obtainable by an electromagnet or a permanent magnet. The numerical simulation model of the cooler was constructed by finite element method. Three different kinds of bonded channel layers were used. The temperature change of the working fluid in the cooler was analyzed. The results from the simulation showed a clear fluid temperature difference between the outlet and inlet of the channel (ΔT) of 11 °C while the fluid average temperature ≈ 7.01 °C at the outlet of the microcooler. The microcooler was fabricated using the MEMS processes, and experimental setup was developed for testing of the microcooler. The cooling test was performed for coolers with different channel layers – only micro channel wafer, microchannels in Si-Si fusion bonded wafers and microchannels in glass-Si anodic bonded wafers. Simulated and experimental results of the cooler demonstrate the effect of the materials that were used for microchannels and intermediate plates, on the cooling characteristics.

2020 ◽  
Vol 145 ◽  
pp. 1992-2004 ◽  
Author(s):  
Jinzhi Zhou ◽  
Xiaoli Ma ◽  
Xudong Zhao ◽  
Yanping Yuan ◽  
Min Yu ◽  
...  

2015 ◽  
Vol 57 (7-8) ◽  
pp. 628-634
Author(s):  
Jing Chen ◽  
Liying Wang ◽  
Zhendong Shi ◽  
Zhen Dai ◽  
Meiqing Guo

2002 ◽  
Vol 16 (17n18) ◽  
pp. 2345-2351 ◽  
Author(s):  
A. CEBERS

The phase diagram of the magnetorheological suspension allowing for the modulated phases in the Hele-Shaw cell under the action of the normal field is calculated. The phase boundaries between the stripe, the hexagonal and the unmodulated phases in dependence on the layer thickness and the magnetic field strength are found. The existence of the transitions between the stripe and the hexagonal phases at the corresponding variation of the physical parameters is illustrated by the numerical simulation of the concentration dynamics in the Hele-Shaw cell. It is remarked that those transitions in the case of the magnetorheological suspensions can be caused by the compression or the expansion of the layer. Among the features noticed at the numerical simulation of the concentration dynamics in the Hele-Shaw cell are: the stripe patterns formed from the preexisting hexagonal structures are more ordered than arising from the initial randomly perturbed state; at the slightly perturbed boundary between the concentrated and diluted phases the hexagonal and the inverted hexagonal phases are formed and others.


Sign in / Sign up

Export Citation Format

Share Document