Laminar Pressure Loss Coefficient in Close Coupled Fittings

2006 ◽  
Author(s):  
Murthy Lakshmiraju ◽  
Jie Cui

Close-coupled fittings are widely used in piping system to change the direction of the fluid and to connect pipes. These fittings cause losses and these losses play a significant role in the total pressure loss in a duct system. Numerical simulations were performed using Fluent on laminar flows in a circular pipe to obtain pressure loss coefficients associated with different fittings of two elbows and three elbows. Each configuration was studied with different intermediate distances between fittings of 0, 1, 3, 5, and 10 pipe diameters. It was observed that for a Reynolds number of 100 and for an intermediate distance less than 5 pipe diameters, the pressure loss coefficient for the coupled fittings was less than that of the uncoupled fittings. While the fittings become uncoupled when the intermediate distance was greater than 5 pipe diameters. Variation of velocity along the axis of the pipe was analyzed to understand the mechanism of the pressure loss for various fitting configurations with different intermediate distances.

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Xiao-lu Lu ◽  
Kun Zhang ◽  
Wen-hui Wang ◽  
Shao-ming Wang ◽  
Kang-yao Deng

The flow characteristic of exhaust system has an important impact on inlet boundary of the turbine. In this paper, high speed flow in a diesel exhaust manifold junction was tested and simulated. The pressure loss coefficient of the junction flow was analyzed. The steady experimental results indicated that both of static pressure loss coefficientsL13andL23first increased and then decreased with the increase of mass flow ratio of lateral branch and public manifold. The total pressure loss coefficientK13always increased with the increase of mass flow ratio of junctions 1 and 3. The total pressure loss coefficientK23first increased and then decreased with the increase of mass flow ratio of junctions 2 and 3. These pressure loss coefficients of the exhaust pipe junctions can be used in exhaust flow and turbine inlet boundary conditions analysis. In addition, simulating calculation was conducted to analyze the effect of branch angle on total pressure loss coefficient. According to the calculation results, total pressure loss coefficient was almost the same at low mass flow rate of branch manifold 1 but increased with lateral branch angle at high mass flow rate of branch manifold 1.


Author(s):  
Kai-Shing Yang ◽  
Ing-Young Chen ◽  
Bor-Yuan Shew ◽  
Chi-Chuan Wang

In this study, an analysis of the performance of micro nozzle/diffusers is performed and fabrication of the micro nozzle/diffuser is conducted and tested. It is found that the pressure loss coefficient for the nozzle/diffuser decreases with the Reynolds number. At a given Reynolds number, the pressure loss coefficient for nozzle is higher than that of the diffuser due to considerable difference in the momentum change. For the effect of nozzle/diffuser length on the pressure loss coefficient, it is found that the influence is rather small. At a fixed volumetric flowrate, a “minimum” phenomenon of the pressure loss coefficient vs. nozzle/diffuser depth is encountered. This is related to the interactions of velocity change and friction factor. Good agreements of the measured data with the predicted results are found in this study except at a diffuser having an opening angle of 20° . It is likely that the departure of this case to the prediction is due to the separation phenomenon in a larger angle of the diffuser.


Author(s):  
Song Zhaoyun ◽  
Bo Liu ◽  
Mao Xiaochen ◽  
Lu Xiaofeng

To improve the design quality of high-turning tandem blade, a coupling optimization system for the shape and relative position of tandem blades was developed based on an improved particle swarm optimization algorithm and NURBS parameterization. First of all, to increase convergence speed and avoid local optima of particle swarm optimization (PSO), an improved particle swarm optimization (IPSO) is formulated based on adaptive selection of particle roles, adaptive control of parameters and population diversity control. Then experiments are carried out using test functions to illustrate the performance of IPSO and to compare IPSO with some PSOs. The comparison indicates IPSO can obtain excellent convergence speed and simultaneously keep the best reliability. In addition, the coupling optimization system is validated by optimizing a large-turning tandem blade. Optimization results illustrate IPSO can obviously increase the optimization speed and reduce the time and cost of optimization. After optimization, at design condition, the total pressure loss coefficient of the optimized blade is decreased by 40.4%, and the static pressure ratio of optimized blade is higher and the total pressure loss coefficient is smaller at all incidence angles. In addition, properly reducing the gap area of tandem blade can effectively reduce the friction loss of the blade boundary layer and the mixing loss created by mixing the gap fluid and the mainstream fluid.


2006 ◽  
Author(s):  
A. M. Pradeep ◽  
R. K. Sullerey

Performance enhancement of three-dimensional S-duct diffusers by separation control using vortex generator jets is the objective of the current experimental investigation. Two different diffuser geometries namely, a circular diffuser and a rectangular–to–circular transitioning diffuser were studied in uniform inflow conditions at a Reynolds number of 7.8 × 105 and the performance evaluation of the diffusers was carried out in terms of static pressure improvement and quality (flow uniformity) of the exit flow. Detailed measurements that included total pressure, velocity distribution, surface static pressure, skin friction and boundary layer measurements were taken and these results are presented here in terms of static pressure rise, distortion coefficient and total pressure loss coefficient at the duct exit. The mass flow rate of the air injected through the VGJ was about 0.06 percent of the main flow for separation control. The distortion coefficient reduced by over 25 percent and the total pressure loss coefficient reduced by about 30 percent in both the diffusers. The physical mechanism of the flow control devices used has been explored using smoke visualization images.


Author(s):  
Y Horii ◽  
Y Asako ◽  
C Hong ◽  
J Lee

The pressure loss of gaseous flow at a micro-tube outlet was investigated numerically. The numerical methodology is based on the arbitrary Lagrangian—Eulerian (ALE) method. Axis-symmetric compressible momentum and energy equations are solved to obtain the pressure loss coefficient of gaseous flow at a micro-tube outlet. Computed tube diameters are 50, 100, and 150μm. The stagnation pressure of upper stream of the tube is chosen in such a way that the Mach number at the tube outlet ranges from 0.1 to 1.2. The ambient (back) pressure is fixed at the atmospheric pressure. The pressure loss coefficients are compared with available experimental data for a conventionally sized tube. The effects of the Mach number and the tube diameter on the pressure loss coefficient are discussed and a correlation for the pressure loss coefficient is proposed.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
D. Lengani ◽  
D. Simoni ◽  
M. Ubaldi ◽  
P. Zunino ◽  
F. Bertini ◽  
...  

The paper analyzes losses and the loss generation mechanisms in a low-pressure turbine (LPT) cascade by proper orthogonal decomposition (POD) applied to measurements. Total pressure probes and time-resolved particle image velocimetry (TR-PIV) are used to determine the flow field and performance of the blade with steady and unsteady inflow conditions varying the flow incidence. The total pressure loss coefficient is computed by traversing two Kiel probes upstream and downstream of the cascade simultaneously. This procedure allows a very accurate estimation of the total pressure loss coefficient also in the potential flow region affected by incoming wake migration. The TR-PIV investigation concentrates on the aft portion of the suction side boundary layer downstream of peak suction. In this adverse pressure gradient region, the interaction between the wake and the boundary layer is the strongest, and it leads to the largest deviation from a steady loss mechanism. POD applied to this portion of the domain provides a statistical representation of the flow oscillations by splitting the effects induced by the different dynamics. The paper also describes how POD can dissect the loss generation mechanisms by separating the contributions to the Reynolds stress tensor from the different modes. The steady condition loss generation, driven by boundary layer streaks and separation, is augmented in the presence of incoming wakes by the wake–boundary layer interaction and by the wake dilation mechanism. Wake migration losses have been found to be almost insensitive to incidence variation between nominal and negative (up to −9 deg) while at positive incidence, the losses have a steep increase due to the alteration of the wake path induced by the different loading distribution.


Author(s):  
Xiayi Si ◽  
Jinfang Teng ◽  
Xiaoqing Qiang ◽  
Jinzhang Feng

Numerical simulations with the steady 3D RANS were performed on the rear stage of a modern high pressure compressor. The labyrinth seal cavity model of the shrouded stator was simplified according to the actual stator structure, which the seal cavity gap is 1% of blade height. Several typical configurations (shrouded stator, idealized stator and cantilevered stators) were designed and carried out, and cantilevered stators contained no gap, small gap (CS1%), design gap (CS2.5%) and large gap (CS4%/CS5%). The results indicate due to the effect of leakage flow from 1% span seal cavity gap, the total pressure loss of SS is larger than IS, while IS instead of SS in the process of the compressor design, the stall margin will be enlarged nearly 6% numerically. At the design point, when the hub gap is 3.5% span clearance CS has the same loss with IS, and when the hub gap is 4.5% span clearance CS has almost the same loss with SS. Among all operation range, the total pressure loss of S1 increases with the increase of the hub clearance. When the hub gap is 0 (CS0), there is no leakage flow and the loss is the least. At the design point, comparing with SS, the total pressure loss coefficient of CS0 decreases 18.34%, CS2.5% decreases 8.46% and IS decreases 6.45%. It means if the cantilevered stator with 2.5% span hub clearance were adopted in the HPC, the performance would be better than the shrouded stator. However, because of the matching condition, the rotor that follows after cantilevered stator should be redesigned according to blade loading and inlet flow angle changed. The performance of cantilevered stator is impacted of various hub clearance, the loss below 25% span increases significantly with hub clearance, the maximum value of outlet flow angle deviation is 2.3 degree. The stator hub peak loading is shifted upstream toward the leading edge when hub clearance size is increased. The total pressure loss coefficient and pressure coefficient at different axial position had the function relation. When the hub clearance increases, the position of double leakage flow start backwards, in the rear part of stator the secondary flow becomes stronger leading to more mixing loss and lower total pressure.


2020 ◽  
Author(s):  
Roupa Agbadede ◽  
Biweri Kainga

Abstract This study presents an investigation of wash fluid preheating on the effectiveness of online compressor washing in industrial gas turbines. Crude oil was uniformly applied on the compressor cascade blades surfaces using a roller brush, and carborundum particles were ingested into the tunnel to create accelerated fouled blades. Demineralized water was preheated to 500C using the heat coil provided in the tank. When fouled blades washed with preheated demineralized and the one without preheating were compared, it was observed that there was little or no difference in terms of total pressure loss coefficient and exit flow angle. However, when the fouled and washed cases were compared, there was a significant different in total pressure loss coefficient and exit flow angle.


Author(s):  
K-S Yang ◽  
M-S Liu ◽  
I-Y Chen ◽  
C-C Wang

In this study, an analysis of the performance of micronozzle/diffusers is performed and fabrication of the micronozzle/diffuser is conducted and tested. It is found that the ratio of the loss coefficient of nozzle and diffuser increases with the Reynolds number and with the opening angle. At a given Reynolds number, the pressure loss coefficient for nozzle is higher than that of the diffuser due to considerable difference in the momentum change. At a fixed volumetric flowrate, a ‘minimum’ phenomenon of the pressure loss coefficient versus nozzle/diffuser depth is encountered. This is related to the interactions of velocity change and friction factor. Good agreements of the measured data with the predicted results are found in this study except at a diffuser having an opening angle of 20°. This is because of the presence of flow separation. The departure of this case to the prediction is due to the separation phenomenon in a larger angle of the diffuser. Hence, a more complicated two- and three-dimensional model is adopted to verify this flow separation inside the diffuser. For the simulation of the two-dimensional case, asymmetry flow field is seen for low Reynolds number region, whereas this phenomenon is not seen under three-dimensional simulation due to the confinement of the side wall.


1966 ◽  
Vol 88 (1) ◽  
pp. 73-81 ◽  
Author(s):  
R. P. Benedict ◽  
N. A. Carlucci ◽  
S. D. Swetz

In this paper, we examine losses associated with compressible and constant-density fluids flowing across abrupt area changes in flow passages. The bases of the conventional constant-density loss coefficients for abrupt enlargements and contractions are first reviewed. A loss parameter based directly on the drop in total pressure is next introduced. Various compressible-flow solutions are then considered. Results are given of new experiments run with air and water flowing across abrupt area changes. The total-pressure-loss parameter is shown to have greater utility and validity than the usual loss coefficient for both compressible and constant-density flows.


Sign in / Sign up

Export Citation Format

Share Document