3-D Simulation of Sedimentation in Turbidity Currents

Author(s):  
S. Hormozi ◽  
B. Firoozabadi ◽  
H. Ghasvari Jahromi

The gravity currents on the inclined boundaries are formed when the inflow fluid has a density difference with the ambient fluid and a tangential component of gravity becomes the driving force. If the density difference arises from the suspended particles, the currents are known as particle-laden density currents, or turbidity currents in which the local density depends on the concentration of particles. A low Reynolds k-ε turbulent model is used to simulate three dimensional turbidity currents. Also some laboratory tests were conducted to study the 3D flow resulting from the release of particle laden density currents on a sloping surface in a channel of freshwater via a sluice gate. Kaolin was used as the suspended material. The height, width, velocity and concentration profiles of turbidity currents were calculated and compared with the experimental data and showed good agreement. Different settling velocity formulas based on, first, solitary particle and, second, considering the effect of dispersed particles thorough the fluid are exerted in the concentration equation and the results compare with each other. Also the sedimentation heights of the turbidity current are simulated which are compatible with the experimental data.

2006 ◽  
Author(s):  
S. Hormozi ◽  
B. Firoozabadi ◽  
H. Ghasvari-Jahromi ◽  
S. M. H. Moosavi Hekmati

The gravity currents on the inclined boundaries are formed when the inflow fluid has a density difference with the ambient fluid and a tangential component of gravity becomes the driving force. If the density difference arises from the suspension of particles, the currents are known as particle-driven density currents, in which the local density of the gravity current depends on the concentration of particles. A low Reynolds k-ε turbulence model is used to simulate three dimensional turbidity currents. Also a laboratory apparatus was built to study the 3D flow resulting from the release of particle laden density currents on a sloping surface in a channel of freshwater via a sluice gate and Kaolin was used as the suspended material. The height, width, velocity and concentration profiles are calculated and compared with the laboratory experiments which show good agreement. Averaged parameters were obtained and Entrainment coefficients against Richardson number were acquired without any approximation and simplification which show the same trend as previous 2D experimental data.


Author(s):  
S. Hormozi ◽  
B. Firoozabadi ◽  
H. Ghasvari Jahromi ◽  
H. Afshin

Dense underflows are continuous currents, which move down the slope due to the fact that, their density are heavier than ambient water. In turbidity currents the density differences arises from suspended solids. Vicinity of the wall make density currents and wall jets similar in some sense but Variation of density cause this flows more complex than wall jets. An improved form of ‘near-wall’ k-ε turbulence model is chosen which preserve all characteristics of both density and wall jet currents and a compression is made between them. Then the outcomes from low Reynolds number k-ε model is compared with v2–f model which show similarity. Also results show good agreement with experimental data.


2006 ◽  
Author(s):  
S. Hormozi ◽  
B. Firoozabadi ◽  
H. Ghasvari Jahromi ◽  
S. M. H. Moosavi Hekmati

Flows generated by density differences are called gravity or density currents which are generic features of many environmental flows. These currents are classified as the conservative and non-conservative flows whether the buoyancy flux is conserved or changed respectively. In this paper, a low Reynolds k-ε turbulence model is used to simulate three dimensional density and turbidity currents. Also, a series of experiments were conducted in a straight channel to study the characteristics of the non-conservative density current. In experiments, Kaolin was used as the suspended material. Comparisons are made between conservative and non-conservative's height, concentration and velocity profiles of the current and their variations along the transverse intersections. Outcomes indicate that the presence of the particles influences the flow structure sensibly. The results are compared with the experiments and showed a good agreement.


2006 ◽  
Author(s):  
S. Hormozi ◽  
B. Firoozabadi ◽  
H. Ghasvari Jahromi ◽  
H. Afshin

Density current is a dense fluid, which is continuously released from a source and spreads down a sloping surface inside a lighter, motionless fluid. A low-Reynolds number k-ε model (Launder and Sharma, 1974) has been used to simulate the behavior of 3-D density currents. Density current with a uniform velocity and concentration enters the channel via a sluice gate into a lighter ambient fluid and moves forward down-slope. The model has been verified with the experimental data sets. Although the k-ε Launder and Sharma model is applied here to a conservative density current, it seems the analysis is valid in general for turbidity current laden with fine particles.


Author(s):  
Rahid Zaman ◽  
Yujiang Xiang ◽  
Jazmin Cruz ◽  
James Yang

In this study, the three-dimensional (3D) asymmetric maximum weight lifting is predicted using an inverse-dynamics-based optimization method considering dynamic joint torque limits. The dynamic joint torque limits are functions of joint angles and angular velocities, and imposed on the hip, knee, ankle, wrist, elbow, shoulder, and lumbar spine joints. The 3D model has 40 degrees of freedom (DOFs) including 34 physical revolute joints and 6 global joints. A multi-objective optimization (MOO) problem is solved by simultaneously maximizing box weight and minimizing the sum of joint torque squares. A total of 12 male subjects were recruited to conduct maximum weight box lifting using squat-lifting strategy. Finally, the predicted lifting motion, ground reaction forces, and maximum lifting weight are validated with the experimental data. The prediction results agree well with the experimental data and the model’s predictive capability is demonstrated. This is the first study that uses MOO to predict maximum lifting weight and 3D asymmetric lifting motion while considering dynamic joint torque limits. The proposed method has the potential to prevent individuals’ risk of injury for lifting.


2020 ◽  
Vol 21 (20) ◽  
pp. 7702 ◽  
Author(s):  
Sofya I. Scherbinina ◽  
Philip V. Toukach

Analysis and systematization of accumulated data on carbohydrate structural diversity is a subject of great interest for structural glycobiology. Despite being a challenging task, development of computational methods for efficient treatment and management of spatial (3D) structural features of carbohydrates breaks new ground in modern glycoscience. This review is dedicated to approaches of chemo- and glyco-informatics towards 3D structural data generation, deposition and processing in regard to carbohydrates and their derivatives. Databases, molecular modeling and experimental data validation services, and structure visualization facilities developed for last five years are reviewed.


Author(s):  
Stephan Uhkoetter ◽  
Stefan aus der Wiesche ◽  
Michael Kursch ◽  
Christian Beck

The traditional method for hydrodynamic journal bearing analysis usually applies the lubrication theory based on the Reynolds equation and suitable empirical modifications to cover turbulence, heat transfer, and cavitation. In cases of complex bearing geometries for steam and heavy-duty gas turbines this approach has its obvious restrictions in regard to detail flow recirculation, mixing, mass balance, and filling level phenomena. These limitations could be circumvented by applying a computational fluid dynamics (CFD) approach resting closer to the fundamental physical laws. The present contribution reports about the state of the art of such a fully three-dimensional multiphase-flow CFD approach including cavitation and air entrainment for high-speed turbo-machinery journal bearings. It has been developed and validated using experimental data. Due to the high ambient shear rates in bearings, the multiphase-flow model for journal bearings requires substantial modifications in comparison to common two-phase flow simulations. Based on experimental data, it is found, that particular cavitation phenomena are essential for the understanding of steam and heavy-duty type gas turbine journal bearings.


1984 ◽  
Vol 62 (3) ◽  
pp. 596-600 ◽  
Author(s):  
R. G. Barradas ◽  
D. S. Nadezhdin

The cathodic reduction of the lead monoxide layer formed on lead in 30% aqueous H2SO4 under anodic oxidation at 0.6 V (vs. Hg/HgSO4 reference electrode) was investigated by linear sweep voltammetry, potential step and admittance measurements. The experimental data were analyzed respectively in terms of thin-layer electrochemistry, electrocrystallisation, and changes of resistance of the PbO layer under reduction. The results seem to be best interpreted from the theory of three-dimensional electrocrystallisation as PbO is reduced to Pb. At sub-zero temperatures the PbO peak observed on our voltammograms and potentiostatic current time transients reveals the splitting of the curves into two peaks, which may be a result of reduction of the same material but of different phases, namely, orthorhombic and tetragonal PbO.


1962 ◽  
Vol 99 (6) ◽  
pp. 558-569 ◽  
Author(s):  
Peter J. Wyllie

AbstractBowen's petrogenetic grid is a PT projection containing univariant curves for decarbonation, dehydration, and solid-solid reactions, with vapour pressure (Pf) equal to total pressure (Ps). Analysis of experimental data in the system MgO–CO2–H2O leads to an expansion of this grid. Three of the important variables in metamorphism when Pf = Ps are P, T, and variation of the pore fluid composition between H2O and CO2. These can be illustrated in a three-dimensional petrogenetic model; one face is a PT plane for reactions occurring with pure H2O, and the opposite face is a similar plane for reactions with pure CO2; these are separated by an axis for pore fluid composition varying between H2O and CO2. Superposition of the PT faces of the model provides the petrogenetic grid. The reactions within the model are represented by divariant surfaces, which may meet along univariant lines. For dissociation reactions, the surfaces curve towards lower temperatures as the proportion of non-reacting volatile increases, and solid-solid reaction surfaces are parallel to the vapour composition axis and perpendicular to the PT axes. The relative temperatures of reactions and the lines of intersections of the surfaces can be illustrated in isobaric sections. Isobaric sections are used to illustrate reactions proceeding at constant pressure with (1) pore fluid composition remaining constant during the reaction, with temperature increasing (2) pore fluid composition changing during the reaction, with temperature increasing, and (3) pore fluid changing composition at constant temperature. The petrogenetic model provides a convenient framework for a wide range of experimental data.


2004 ◽  
Vol 18 (09) ◽  
pp. 1351-1368
Author(s):  
ANDREI DOLOCAN ◽  
VOICU OCTAVIAN DOLOCAN ◽  
VOICU DOLOCAN

Using a new Hamiltonian of interaction we have calculated the cohesive energy in three-dimensional structures. We have found the news dependences of this energy on the distance between the atoms. The obtained results are in a good agreement with experimental data in ionic, covalent and noble gases crystals. The coupling constant γ between the interacting field and the atoms is somewhat smaller than unity in ionic crystals and is some larger than unity in covalent and noble gases crystals. The formulae found by us are general and may be applied, also, to the other types of interactions, for example, gravitational interactions.


Sign in / Sign up

Export Citation Format

Share Document