The Effects of Perfluoroalkyl Carboxylic Acid Coating of Al Particles to Flame Propagation

Author(s):  
B. Dikici ◽  
M. L. Pantoya ◽  
R. J. Jouet

In this study, two types of nano-Al/metal oxide composites are examined. The first Al sample is passivated with Al2O3 and treated with perfluoroalkyl carboxylic acid (C13F27COOH). The second Al sample is devoid of an alumina shell and instead passivated with perfluoroalkyl carboxylic acid (C13F27COOH). The goal of this study is to understand the role of the passivation shell and associated reaction mechanism on flame propagation. Results show that when there is no alumina passivation shell encasing the Al core the flame propagation rates are reduced by two orders of magnitude. All flame propagation experiments were performed in a confined flame tube apparatus which may not be ideal for characterizing materials with significantly different ignition sensitivities. Results indicate that flame speeds measured with this apparatus are dependent on the ignition sensitivity of the mixture. Acid treated Al particles are shown to be roughly five times less ignition sensitive than the Al particles with no acid treatment; however, both particles produce roughly the same heat of combustion in thermal equilibrium measurements.

Author(s):  
G. N. Gerasimov ◽  
V. F. Gromov ◽  
M. I. Ikim ◽  
L. I. Trachtenberg

Abstract The relationship between the structure and properties of nanoscale conductometric sensors based on binary mixtures of metal oxides in the detection of reducing gases in the environment is considered. The sensory effect in such systems is determined by the chemisorption of oxygen molecules and the detected gas on the surface of metal oxide catalytically active particles, the transfer of the reaction products to electron-rich nanoparticles, and subsequent reactions. Particular attention is paid to the doping of nanoparticles of the sensitive layer. In particular, the effect of doping on the concentration of oxygen vacancies, the activity of oxygen centers, and the adsorption properties of nanoparticles is discussed. In addition, the role of heterogeneous contacts is analyzed.


1997 ◽  
Vol 75 (3) ◽  
pp. 501-508 ◽  
Author(s):  
Siew Hwee Lee ◽  
David M. Reid

The possible role of ethylene in leaf expansion of the primary leaves of sunflower plants (Helianthus annuus) was studied. Our lowest application of ethephon promoted expansion of primary leaves. Higher concentrations of ethephon, and a range of concentrations of 1-aminocyclopropane-1-carboxylic acid, increased endogenous ethylene concentration and caused a reduction in the area of the primary leaves. The inhibition in leaf expansion induced by ethephon and 1-aminocyclopropane-1-carboxylic acid was reversed by pretreating the plants with an inhibitor of ethylene action, namely silver thiosulphate. Treating leaves with lower concentrations of aminoefhoxyvinylglycine reduced ethylene production and stimulated leaf expansion. This effect of aminoethoxyvinylglycine could be nullified by pretreating the plants with 1-aminocyclopropane-1-carboxylic acid. Treatment with silver thiosulphate enhanced leaf expansion. This indicates that endogenous ethylene normally plays a significant role in leaf expansion. Flooded and gravistimulated plants produced more ethylene and had smaller leaves. This could suggest that the increased ethylene is the main cause of the slowed leaf growth, however, only in some cases were we able to partially reverse the effect of flooding with silver thiosulphate. This indicates that there are probably many factors, in addition to increased ethylene, that inhibit leaf expansion in flooded and gravistimulated plants. Key words: ethylene, leaf expansion.


RSC Advances ◽  
2014 ◽  
Vol 4 (8) ◽  
pp. 3823-3851 ◽  
Author(s):  
Ravi Kant Upadhyay ◽  
Navneet Soin ◽  
Susanta Sinha Roy

2011 ◽  
Vol 2011 (30) ◽  
pp. 5981-5990 ◽  
Author(s):  
Hayley Charville ◽  
David A. Jackson ◽  
George Hodges ◽  
Andrew Whiting ◽  
Mark R. Wilson

1969 ◽  
Vol 21 (02) ◽  
pp. 294-303 ◽  
Author(s):  
H Mihara ◽  
T Fujii ◽  
S Okamoto

SummaryBlood was injected into the brains of dogs to produce artificial haematomas, and paraffin injected to produce intracerebral paraffin masses. Cerebrospinal fluid (CSF) and peripheral blood samples were withdrawn at regular intervals and their fibrinolytic activities estimated by the fibrin plate method. Trans-form aminomethylcyclohexane-carboxylic acid (t-AMCHA) was administered to some individuals. Genera] relationships were found between changes in CSF fibrinolytic activity, area of tissue damage and survival time. t-AMCHA was clearly beneficial to those animals given a programme of administration. Tissue activator was extracted from the brain tissue after death or sacrifice for haematoma examination. The possible role of tissue activator in relation to haematoma development, and clinical implications of the results, are discussed.


Sign in / Sign up

Export Citation Format

Share Document