FEM Analysis of a 0.50 Caliber Rifle Barrel

Author(s):  
Gary A. Anderson ◽  
Corey M. Lanoue ◽  
Fereidoon Delfanian

In order to ensure rifle barrels have the features of high strength, durability, and light weight, the strength analysis of the barrels under hot temperatures and pressures is very important in the design. A finite element model incorporating the plastic deformation of a typical 0.50 caliber rifle barrel is constructed to determine the stresses caused by the mechanical loads and plastic deformation. According to the simulation results, the finite element analysis is proved to be a power analysis tool for future failure analysis of firearm barrels. The method provides a power tool for analysis of firearm barrels. The projectile was accelerated to 941.7 m/s in 1.430 ms with a pressure profile that reached a maximum of 469.3 MPa. Stresses as large as 1,410 MPa along the interior of the barrel were found where the leading edge of the projectile slides along the bore, but the largest stresses at the exterior of the barrel were found where the barrel wall is thinnest near the chamber.

2011 ◽  
Vol 328-330 ◽  
pp. 435-440
Author(s):  
Jun Liao ◽  
Lan Shan ◽  
Yan Feng

The establishment of FCEV finite element model of the subframe is based on Hypermesh platform, and a new subframe structure is designed in accordance with the stiffness and strength analysis on the original subframe in all conditions. High-strength steel materials are used to optimize the design of this new structure, which result in the optimal size. Through the comparative analysis of the strength, stiffness, mode shape and quality on new subframe and the original one, it is verified that the design of the new subframe is reasonable and feasible.


2011 ◽  
Vol 66-68 ◽  
pp. 1240-1244
Author(s):  
Sheng Yao Gao ◽  
De Shi Wang ◽  
Qi Zheng Zhou

As the most dominative component under stress in an external combustion cam engine, the working condition of piston is very rigor. Once new design type and technical improvement is applied, it is necessary to analysis its thermal load and take secure steps. And the finite element model on each conditions of thermal is calculated, which is used to estimate the temperature field and provide a theoretical basis for further structural strength analysis and optimization design. Choosing analysis results of the piston as reference and taking five structural parameters of the piston as design variables, two objective functions including piston mass and maximal Von Mises stress are respectively considered. The optimum design of the piston is executed and the results indicate that it is feasible to improve temperature field and strength of the piston. These results enrich and develop the research on structural analysis and optimization of spatial engine, which are of guiding significance for analyzing engine strength and related problem in theoretically.


2015 ◽  
Vol 27 (04) ◽  
pp. 1550034
Author(s):  
M. Cerrolaza ◽  
W. Carrero ◽  
J. Cedeño ◽  
L. Valencia

Distractor devices are implanted temporarily in the bony structure in order to regenerate the bone tissue required and then be removed from the distraction site at the end of the consolidation period of callus. In this research, an osteogenic alveolar distractor (OAD) to deal with jaw bone deficiency in the alveolar area is proposed and described in this study. It addresses the FEM analysis of the proposed model of an OAD under physiological loading after the implantation. A finite element model subjected to physiological load exerted by the voluntary protrusion of the tongue on the alveolar distractor was analyzed and developed. The applied biological loads were the forces generated by the involuntary movement of the tongue against the distal end of the assembly. Both of them act on the head of the distractor screw, in the same direction but in opposite directions. The distraction device has been simulated on the alveolar bone, taking into account the most critical conditions that may occur during the distraction osteogenesis. The alveolar distractor proposed has a geometry that allows, by using only two intra-cortical screws, the attachment of the base plate to the alveolar bone without sacrificing a large periosteum area of the periosteum, which is primarily responsible for blood supply and nutrient source to the bone segment being distracted. The resulting stresses were lower than those corresponding to the resistance threshold in the bone.


Author(s):  
Eduardo Ribeiro Malta ◽  
Clóvis de Arruda Martins

Axial compressive loads can appear in several situations during the service life of a flexible pipe, due to pressure variations during installation or due to surface vessel heave. The tensile armor withstands well tension loads, but under compression, instability may occur. A Finite Element model is constructed using Abaqus in order to study a flexible pipe compound by external sheath, two layers of tensile armor, a high strength tape and a rigid nucleus. This model is fully tridimensional and takes into account all kinds of nonlinearities involved in this phenomenon, including contacts, gaps, friction, plasticity and large displacements. It also has no symmetry or periodical limitations, thus permitting each individual wire of the tensile armor do displace in any direction. Case studies were performed and their results discussed.


Author(s):  
Haibin Zhang ◽  
Huilong Ren ◽  
Yangshan Dai

A kind of direct strength analysis method of semi-submersible platform structures is presented in this paper. With the differences in shape of pontoon, column and beam being considered, the method of accumulative chord length cubic parameter spline function combined with analytic expression is adopted to generate the mesh of platform wet surface. The hydrodynamic coefficients of the platform are calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for platforms with low forward speed. The equations of platform motions are established and solved in frequency domain, and the responses of wave-induced loads on the platforms are calculated. According to the mesh of hydrodynamic computation, the fluid dynamic pressure field of platform wet surface is built, and the pressure loads on shell elements in the finite element model of the structure are calculated by the interpolation method. The calculation conditions and loads in the finite element analysis (FEA) of the platform structures are determined according to the design wave analysis approach. A computer program based on this method has been developed, and a calculation example of semi-submersible platform is illustrated. Analysis results show that this method is a satisfying approach for wave load computation and direct strength analysis of the semi-submersible platforms.


2014 ◽  
Vol 611-612 ◽  
pp. 1753-1762 ◽  
Author(s):  
Elena Silvestre ◽  
Eneko Sáenz de Argandoña ◽  
Lander Galdos ◽  
Joseba Mendiguren

Roll levelling is a forming process used to remove the residual stresses and imperfections of metal strips by means of plastic deformations. During the process the metal fibres are subjected to cyclic tension-compression deformations leading to achieve flat product. The process is especially important to avoid final geometrical errors when coils are cold formed or when thick plates are cut by laser. In the last years, and due to the appearance of high strength materials such as Ultra High Strength Steels, machine design engineers are demanding a reliable tool for the dimensioning of the levelling facilities. In response to this demand, Finite Element Analysis and Analytical methods are becoming an important technique able to lead engineers towards facilities optimization through a deeper understanding of the process. Aiming to this study two different models have been developed to analyze the roll levelling operations: an analytical model and a finite element model. The FE-analysis was done using 2D-modelling assuming plane strain conditions. Differing settings, leveller configuration and materials were investigated. The one-dimensional analytical levelling model is based on classical beam theory to calculate the induced strain distribution through the strip, and hence the evolving elastic/plastic stress distribution. Both models provide a useful guide to process-sensitivities and are able to identify causes of poor leveller performance. The theoretical models have been verified by a levelling experimental prototype with 13 rolls at laboratory.


Author(s):  
Ho Seung Jeong ◽  
Jong Rae Cho ◽  
Lae Sung Kim ◽  
Man Yeong Ha ◽  
Ji Hwan Jeong ◽  
...  

The multi-physics analysis using both the CFD and thermo-mechanical analysis is carried out to estimate the life of the heat exchanger which is operated under the conditions of high temperature and high pressure. First CFD analysis is carried out to obtain the distribution of flow, pressure and temperature around heat exchanger. The distribution of pressure, temperature and heat transfer coefficient obtained from the CFD analysis is transferred to the thermo-mechanical analysis using finite element analysis technique and is used as data to calculate the mechanical and thermal stress distribution in the heat exchanger. For the CFD analysis, it is considered a segment of heat exchangers using the symmetric and periodic conditions. For the thermo-mechanical analysis, the present finite element model considered both a segment and a half of full geometry by using the symmetric and periodic conditions. Alloy 625 is used for the present heat exchanger design due to its high strength at the elevated temperatures. The temperature-dependent physical properties of Alloy 625 for the thermo-mechanical analysis are used in a temperature ranges of 300∼1100K. Fatigue analysis is performed using a Goodman-diagram to assess the life of the present heat exchanger.


2010 ◽  
Vol 40-41 ◽  
pp. 127-132
Author(s):  
Zhao Xiang Deng ◽  
Fei Lai

A new type of electromagnetic linear actuator for vehicle active suspension system is designed. Combined with the finite element analysis tool and electromagnetic induction principle, the finite element model and mathematic model are built up individually. Based on the simulation results, a prototype of electromagnetic linear actuator is developed. By comparison of the finite element simulation results and the experimental data, it shows the correctness of actuator design and simulation model.


Author(s):  
Eduardo Ribeiro Malta ◽  
Clóvis de Arruda Martins

In order to study the compressive behavior of flexible pipes, a nonlinear tridimensional finite element model was developed. This model recreates a five layer flexible pipe with two tensile armor layers, an external polymeric sheath, an orthotropic high strength tape and a rigid inner nucleus. Using this model, several studies are being conducted to verify the influence of key parameters on the wire instability phenomenon. The pipe sample length can be considered one of these parameters and its variation causes significant change at the stability response of the tensile layers. This article includes a detailed description of the finite element model itself and a case study where the length of the pipe is changed. The procedure of this analysis is here described, along with the results.


Sign in / Sign up

Export Citation Format

Share Document