Quality Factors of Crystalline Semiconductor Nanocomposite Resonators

Author(s):  
Puroorava Chakravarthy ◽  
Gang Li

A nanocomposite can generally be regarded as a solid combining a bulk matrix and nano-scale phases. The phases can be nanoparticles, nanowires, nanoplatelets and etc. The addition of nanosized phases into the bulk matrix can lead to significantly different material properties compared to their macrocomposite counterparts. In this work, we investigate the characteristics of energy dissipation in nanocomposite resonators. By using classical molecular dynamics (MD), we calculate the quality factors of layered and fibrous crystalline semiconductor nanocomposite resonators. Key factors that determine the quality factor of the nanocomposite resonators are identified and analyzed.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Najat A. Alghamdi ◽  
Hamdy M. Youssef

Thermal and mechanical relaxation times play vital roles in the values of the quality factor of micro/nanoresonators. They can control the energy dissipation across the coupling of mechanical and thermal behavior. In this paper, we introduce an analytical model that considers a pre-stress in a micro-viscothermoelastic resonator to modify the thermal and mechanical relaxation times and thus higher the quality factor. The impacts of length scale and static pre-stress on the quality factor have been discussed. The model expects that significant improvement in terms of quality factors is possible by tuning the pre-stress and the thermal and mechanical relaxation times parameters, and the isothermal value of frequency have significant effects on the thermal quality factor of the resonators.


2008 ◽  
Vol 32 ◽  
pp. 259-262 ◽  
Author(s):  
Akbar Afaghi Khatibi ◽  
Bohayra Mortazavi

Developing new techniques for the prediction of materials behaviors in nano-scales has been an attractive and challenging area for many researches. Molecular Dynamics (MD) is the popular method that is usually used to simulate the behavior of nano-scale material. Considering high computational costs of MD, however, has made this technique inapplicable as well as inflexible in various situations. To overcome these difficulties, alternative procedures are thought. Considering its capabilities, Finite Element Analysis (FEA) seems to be the most appropriate substitute for MD simulations in most cases. But since the material properties in nano, micro, and macro scales are different, therefore to use FEA methods in nano-scale modeling one must use material properties appropriate to that scale. To this end, a previously developed Hybrid Molecular Dynamics-Finite Element (HMDFE) approach was used to investigate the nanoindentation behavior of single crystal silicon with Berkovich indenter. In this study, a FEA model was developed based on the material properties extracted from molecular dynamics simulation of uniaxial tension test on single crystal Silicon. Eventually, by comparison of FEA results with experimental data, the validity of this new technique for the prediction of nanoindentation behavior of Silicon was concluded.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 486 ◽  
Author(s):  
Ivo Stachiv ◽  
Lifeng Gan

Recent progress in nanotechnology has enabled to design the advanced functional micro-/nanostructures utilizing the unique properties of ultrathin films. To ensure these structures can reach the expected functionality, it is necessary to know the density, generated internal stress and the material properties of prepared films. Since these films have thicknesses of several tens of nm, their material properties, including density, significantly deviate from the known bulk values. As such, determination of ultrathin film material properties requires usage of highly sophisticated devices that are often expensive, difficult to operate, and time consuming. Here, we demonstrate the extraordinary capability of a microcantilever commonly used in a conventional atomic force microscope to simultaneously measure multiple material properties and internal stress of ultrathin films. This procedure is based on detecting changes in the static deflection, flexural and torsional resonant frequencies, and the corresponding quality factors of the microcantilever vibrating in air before and after film deposition. In contrast to a microcantilever in vacuum, where the quality factor depends on the combination of multiple different mechanical energy losses, in air the quality factor is dominated just by known air damping, which can be precisely controlled by changing the air pressure. Easily accessible expressions required to calculate the ultrathin film density, the Poisson’s ratio, and the Young’s and shear moduli from measured changes in the microcantilever resonant frequencies, and quality factors are derived. We also show that the impact of uncertainties on determined material properties is only minor. The validity and potential of the present procedure in material testing is demonstrated by (i) extracting the Young’s modulus of atomic-layer-deposited TiO2 films coated on a SU-8 microcantilever from observed changes in frequency response and without requirement of knowing the film density, and (ii) comparing the shear modulus and density of Si3N4 films coated on the silicon microcantilever obtained numerically and by present method.


2012 ◽  
Vol 590 ◽  
pp. 173-178
Author(s):  
Chao Wei Si ◽  
Guo Wei Han ◽  
Jin Ning ◽  
Wei Wei Zhong ◽  
F.H. Yang

MEMS gyroscopes of frame structures are capable of isolating the quadrature error between the drive motion and the sense motion, which is often utilized in current gyroscope design. But quality factors of previous reported gyroscopes of frame structure are hardly over 1000, which are far more less than that of gyroscopes manufactured before with only one mass block for sensing and driving. Although the effectiveness of isolating quadrature errors is proved, the sensitivity is decreased as well as the power consumption is increased for higher drive voltage. Reasons why MEMS gyroscopes of frame structure has low quality factors is pointed out here with a method of anchor loss mechanism, and the energy dissipation is modeled with a 2 degree of vibration system, which tells the relationship between the mass ratio of the inner mass and the outer frame and the spring factor ratio for supporting masses, and the quality factor assess techniques is proposed here. Therefore the admissible parameters of the mass ratio and the spring factor ratio are given, which makes MEMS gyroscopes of frame structures have advantages of quadrature error isolation as well as high sensitivity. In the end, gyroscopes with optimized parameters and reported parameters are manufactured on SOI wafer, and variations of the quality factors as expected proves the rationality of the proposed energy dissipation model in this paper. For Process limitations, quality factors of gyroscopes of frame structures are improved lower than expected, but far more improved than previous reported gyroscopes, and better results should be realized in more mature and stabilized process.


Author(s):  
Dong Meng ◽  
Amir Afshar ◽  
Randa Bassou ◽  
David S. Thompson ◽  
Jing Zong ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 700-715 ◽  
Author(s):  
Wei Jian ◽  
David Hui ◽  
Denvid Lau

AbstractRecent advances in biomedicine largely rely on the development in nanoengineering. As the access to unique properties in biomaterials is not readily available from traditional techniques, the nanoengineering becomes an effective approach for research and development, by which the performance as well as the functionalities of biomaterials has been greatly improved and enriched. This review focuses on the main materials used in biomedicine, including metallic materials, polymers, and nanocomposites, as well as the major applications of nanoengineering in developing biomedical treatments and techniques. Research that provides an in-depth understanding of material properties and efficient enhancement of material performance using molecular dynamics simulations from the nanoengineering perspective are discussed. The advanced techniques which facilitate nanoengineering in biomedical applications are also presented to inspire further improvement in the future. Furthermore, the potential challenges of nanoengineering in biomedicine are evaluated by summarizing concerned issues and possible solutions.


1995 ◽  
Vol 85 (5) ◽  
pp. 1359-1372
Author(s):  
Hsi-Ping Liu

Abstract Because of its simple form, a bandlimited, four-parameter anelastic model that yields nearly constant midband Q for low-loss materials is often used for calculating synthetic seismograms. The four parameters used in the literature to characterize anelastic behavior are τ1, τ2, Qm, and MR in the relaxation-function approach (s1 = 1/τ1 and s2 = 1/τ2 are angular frequencies defining the bandwidth, MR is the relaxed modulus, and Qm is approximately the midband quality factor when Qm ≫ 1); or τ1, τ2, Qm, and MR in the creep-function approach (s1 = 1/τ1 and s2 = 1/τ2 are angular frequencies defining the bandwidth, and Qm is approximately the midband quality factor when Qm ≫ 1). In practice, it is often the case that, for a particular medium, the quality factor Q(ω0) and phase velocity c(ω0) at an angular frequency ω0 (s1 < ω0 < s2; s1 < ω0 < s2) are known from field measurements. If values are assigned to τ1 and τ2 (τ2 < τ1), or to τ1 and τ2 (τ2 < τ1), then the two remaining parameters, Qm and MR, or Qm and MR, can be obtained from Q(ω0). However, for highly attenuative media, e.g., Q(ω0) ≦ 5, Q(ω) can become highly skewed and negative at low frequencies (for the relaxation-function approach) or at high frequencies (for the creep-function approach) if this procedure is followed. A negative Q(ω) is unacceptable because it implies an increase in energy for waves propagating in a homogeneous and attenuative medium. This article shows that given (τ1, τ2, ω0) or (τ1, τ2, ω0), a lower limit of Q(ω0) exists for a bandlimited, four-parameter anelastic model. In the relaxation-function approach, the minimum permissible Q(ω0) is given by ln [(1 + ω20τ21)/(1 + ω20τ22)]/{2 arctan [ω0(τ1 − τ2)/(1 + ω20τ1τ2)]}. In the creep-function approach, the minimum permissible Q(ω0) is given by {2 ln (τ1/τ2) − ln [(1 + ω20τ21)/(1 + ω20τ22)]}/{2 arctan [ω0(τ1 − τ2)/(1 + ω20τ1τ2)]}. The more general statement that, for a given set of relaxation mechanisms, a lower limit exists for Q(ω0) is also shown to hold. Because a nearly constant midband Q cannot be achieved for highly attenuative media using a four-parameter anelastic model, a bandlimited, six-parameter anelastic model that yields a nearly constant midband Q for such media is devised; an expression for the minimum permissible Q(ω0) is given. Six-parameter anelastic models with quality factors Q ∼ 5 and Q ∼ 16, constant to 6% over the frequency range 0.5 to 200 Hz, illustrate this result. In conformity with field observations that Q(ω) for near-surface earth materials is approximately constant over a wide frequency range, the bandlimited, six-parameter anelastic models are suitable for modeling wave propagation in highly attenuative media for bandlimited time functions in engineering and exploration seismology.


Sign in / Sign up

Export Citation Format

Share Document