Bolt Bearing Strength of Commingled Boron/Glass Fiber Reinforced Aluminum Laminates

Author(s):  
P. C. Yeh ◽  
P. Y. Chang ◽  
J. M. Yang ◽  
P. H. Wu ◽  
M. C. Liu

The bearing properties of recently developed hybrid fiber/metal laminates, or COmmingled Boron/glass fiber Reinforced Aluminum laminates (COBRA), are investigated in this study. The bolt-type bearing tests on GLass REinforced aluminum laminates (GLARE), non-commingled hybrid boron/glass/aluminum fiber/metal laminates (HFML) and COBRA were carried out as a function of e/D ratio, metal volume fraction, fiber volume fraction, and fiber orientation. Experimental results show that with the same joint geometry and metal volume fraction, the commingling of boron fibers improves the bearing strength of fiber/metal laminates. The bearing strength of COBRA with longitudinal fibers is lower than that with transverse fibers due to the fact that shearout failure takes place before maximum bearing strength is reached. The experimental results show that, with only either transverse fiber orientation or longitudinal fiber orientation, COBRA with 18% boron fiber volume fraction possesses a higher bearing strength when compared to HFML with 6% boron fiber volume fraction. In addition to the properties in COBRA with parallel-plies commingled prepreg, the bearing properties of various COBRA with [0°/90°] and [0°/90°/90°/0°] cross-ply commingled prepregs are also discussed.

Fibers ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 67 ◽  
Author(s):  
Manish Roy ◽  
Corey Hollmann ◽  
Kay Wille

This paper studied the influence of fiber volume fraction ( V f ), fiber orientation, and type of reinforcement bar (rebar) on the uniaxial tensile behavior of rebar-reinforced strain-hardening ultra-high performance concrete (UHPC). It was observed that the tensile strength increased with the increase in V f . When V f was kept constant at 1%, rebar-reinforced UHPC with fibers aligned with the load direction registered the highest strength and that with fibers oriented perpendicular to the load direction recorded the lowest strength. The strength of the composite with random fibers laid in between. Moreover, the strength, as well as the ductility, increased when the normal strength grade 60 rebars embedded in UHPC were replaced with high strength grade 100 rebars with all other conditions remaining unchanged. In addition, this paper discusses the potential of sudden failure of rebar-reinforced strain hardening UHPC and it is suggested that the composite attains a minimum strain of 1% at the peak stress to enable the members to have sufficient ductility.


2019 ◽  
pp. 089270571988691 ◽  
Author(s):  
Akar Dogan

This study focuses on the effects of low-velocity impact (LVI) response of thermoset (TS) and thermoplastic (TP) matrix-based composites. In this study, the effects of the impactor shapes on the low-velocity impact response of the composite panels that produced from different matrix was investigated. Unidirectional E-glass fiber fabrics with an areal density of 300 g/m2 as reinforcement and epoxy matrix were used to produce TS composite. The vacuum-assisted resin infusion molding (VARIM) method was used to manufacture composite panels. The thermoplastic composites were manufactured with E-glass fiber-reinforced polypropylene prepregs. The tensile strength of TS matrix-based composites is higher than TP matrix-based composites that have the same fiber volume fraction. Despite being under the same impact energy, the TP specimens possess higher perforation threshold than TS specimens. The shape of the impactor significantly affected the perforation threshold. Besides, the impact number that caused perforation reduced dramatically in conical impactor. The repeated impact number that caused perforation is 36 for hemispherical (HS) impactor, but it is only 3 for conical impactor for polypropylene matrix-based composite. Moreover, a significant effect of fiber volumetric ratio on impact resistance was observed. The perforation threshold of glass fiber-reinforced polypropylene composites for 40% and 50% fiber volume fraction are 61 and 98 J, respectively. The perforation threshold of TP and TS specimens for HS impactor that has the same stacking sequence is 61 and 55 J, respectively.


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Paryanto Dwi Setyawan ◽  
Nasmi Herlina Sari ◽  
Dewa Gede Pertama Putra

Composite manufacturing is done by hand lay-up method with a fiber volume fraction 10%, 20%, 30%, and 40% with unidirectional and random short fiber orientation of pineapple leaves. Specimen testing is performed with a standard tensile strength test ASTM D3039. As a results is known that the tensile strength of composites increased with increasing fiber volume fraction for unidirectional fiber orientation, but rather to the random orientation of short fibers. Meanwhile, the composite tensile strain increases withincreasingfibervolume fractionfor both theorientation of thefibersof pineappleleaves.


Sign in / Sign up

Export Citation Format

Share Document