scholarly journals PENGARUHORIENTASI DANFRAKSI VOLUME SERAT DAUN NANAS (ANANAS COMOSUS)TERHADAP KEKUATAN TARIK KOMPOSIT POLYESTERTAK JENUH(UP)

2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Paryanto Dwi Setyawan ◽  
Nasmi Herlina Sari ◽  
Dewa Gede Pertama Putra

Composite manufacturing is done by hand lay-up method with a fiber volume fraction 10%, 20%, 30%, and 40% with unidirectional and random short fiber orientation of pineapple leaves. Specimen testing is performed with a standard tensile strength test ASTM D3039. As a results is known that the tensile strength of composites increased with increasing fiber volume fraction for unidirectional fiber orientation, but rather to the random orientation of short fibers. Meanwhile, the composite tensile strain increases withincreasingfibervolume fractionfor both theorientation of thefibersof pineappleleaves.

2011 ◽  
Vol 474-476 ◽  
pp. 548-552
Author(s):  
Jun Tian

Constant stress tensile creep tests were conducted on AZ91D–20 vol.%, 25 vol.%, and 30 vol.% Al2O3-SiO2short fiber composites and on an unreinforced AZ91D matrix alloy. The creep resistance of the reinforced materials is shown to be considerably improved compared with the matrix alloy. With the increasing volume fraction of short fibers, the creep resistance of AZ91D composites is improved, and their creep threshold stresses are also increased accordingly. Because of the increasing volume fraction of short fibers, loads of bearing and transmission of short fibers will increase, and thus the creep resistance of AZ91D composites further improves, but the precipitation of β-Mg17Al12precipitate increases in the number, it is easy to soften coarse, so that threshold stress of AZ91D composite does not increase greatly.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Gerald A Pohan ◽  
Totok Sugiarto ◽  
Dwi Cahyo Galih Arianto

Royal palm (Roystonea regia) is still utilized in traditional way. In this study, royal palm fiber is employed as a reinforcing material in composites. The fiber is divided into two groups of fibers, which are continuous and discontinuous, with a length of fibers of 20 and 5 cm, respectively. Continuous fibers are arranged in parallel, while discontinuous fibers are sown in random orientation. The variations in fiber volume fraction were 15, 25, 50, and 75%. Tensile tests were performed to determine composite strength. The test results show that composite tensile strength values with continuous fibers are higher than those of discontinuous fibers. In addition, the increase in fiber volume fraction is directly proportional to the tensile strength of the specimen. These results indicate that the royal palm fiber has the potential to be used in composite applications.Keywords: royal palm fiber, biocomposite, tensile strength


2004 ◽  
Vol 261-263 ◽  
pp. 1073-1078 ◽  
Author(s):  
Yasuo Ochi ◽  
Kiyotaka Masaki ◽  
Takashi Matsumura ◽  
M. Wadasako

The rotating bending fatigue tests in high cycle region were carried out on alumina short fiber reinforced aluminum alloy composites (MMCs) at room and elevated temperatures of 200, 350, 400 and 450°C. The four kind of MMCs with 0%, 10%, 18% and 25% volume fraction were prepared in order to investigate the effects of alumina short fiber volume fraction on the fatigue property such as the fatigue strength, the crack initiation and propagation behaviors. As results, it was found that the fatigue strength at 107 cycles decreased with increase in the test temperature, but increased with an increase in alumina short fiber volume fraction at room and elevated temperatures. The crack initiation sites were large size alumina short fibers; some kind of cluster of short fibers and large size alumina particles (i.e. shots). And the crack growth paths were related to the distribution of the short fibers.


2021 ◽  
Vol 879 ◽  
pp. 284-293
Author(s):  
Norliana Bakar ◽  
Siew Choo Chin

Fiber Reinforced Polymer (FRP) made from synthetic fiber had been widely used for strengthening of reinforced concrete (RC) structures in the past decades. Due to its high cost, detrimental to the environment and human health, natural fiber composites becoming the current alternatives towards a green and environmental friendly material. This paper presents an investigation on the mechanical properties of bamboo fiber reinforced composite (BFRC) with different types of resins. The BFRC specimens were prepared by hand lay-up method using epoxy and vinyl-ester resins. Bamboo fiber volume fractions, 30%, 35%, 40%, 45% and 50% was experimentally investigated by conducting tensile and flexural test, respectively. Results showed that the tensile and flexural strength of bamboo fiber reinforced epoxy composite (BFREC) was 63.2% greater than the bamboo fiber reinforced vinyl-ester composite (BFRVC). It was found that 45% of bamboo fiber volume fraction on BFREC exhibited the highest tensile strength compared to other BFRECs. Meanwhile, 40% bamboo fiber volume fraction of BFRVC showed the highest tensile strength between bamboo fiber volume fractions for BFRC using vinyl-ester resin. Studies showed that epoxy-based BFRC exhibited excellent results compared to the vinyl-ester-based composite. Further studies are required on using BFRC epoxy-based composite in various structural applications and strengthening purposes.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jingjing He ◽  
Junping Shi ◽  
Xiaoshan Cao ◽  
Yifeng Hu

Uniaxial tensile tests of basalt fiber/epoxy (BF/EP) composite material with four different fiber orientations were conducted under four different fiber volume fractions, and the variations of BF/EP composite material failure modes and tensile mechanical properties were analyzed. The results show that when the fiber volume fraction is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all decrease with increasing fiber orientation angle. When the fiber orientation angle is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all increase with increasing fiber volume fraction. A certain degree of fiber clustering appears in the epoxy resin when the basalt fiber volume fraction is >1.2%. The fiber equidistribution coefficient and clustering fiber content were used to characterize the basalt fiber clustering effect. With the increase of fiber volume fraction, the clustering fiber content gradually increased, but the fiber equidistribution coefficient decreased. Meanwhile, based on Tsai theory, a geometric model and a tensile mechanical model of the clustering fiber are established. By considering the fiber clustering effect, the BF/EP composite material tensile strength is calculated, and the calculated values are close to the experimental results.


Fibers ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 67 ◽  
Author(s):  
Manish Roy ◽  
Corey Hollmann ◽  
Kay Wille

This paper studied the influence of fiber volume fraction ( V f ), fiber orientation, and type of reinforcement bar (rebar) on the uniaxial tensile behavior of rebar-reinforced strain-hardening ultra-high performance concrete (UHPC). It was observed that the tensile strength increased with the increase in V f . When V f was kept constant at 1%, rebar-reinforced UHPC with fibers aligned with the load direction registered the highest strength and that with fibers oriented perpendicular to the load direction recorded the lowest strength. The strength of the composite with random fibers laid in between. Moreover, the strength, as well as the ductility, increased when the normal strength grade 60 rebars embedded in UHPC were replaced with high strength grade 100 rebars with all other conditions remaining unchanged. In addition, this paper discusses the potential of sudden failure of rebar-reinforced strain hardening UHPC and it is suggested that the composite attains a minimum strain of 1% at the peak stress to enable the members to have sufficient ductility.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3335 ◽  
Author(s):  
Seungwon Kim ◽  
Dong Joo Kim ◽  
Sung-Wook Kim ◽  
Cheolwoo Park

Concrete has high compressive strength, but low tensile strength, bending strength, toughness, low resistance to cracking, and brittle fracture characteristics. To overcome these problems, fiber-reinforced concrete, in which the strength of concrete is improved by inserting fibers, is being used. Recently, high-performance fiber-reinforced cementitious composites (HPFRCCs) have been extensively researched. The disadvantages of conventional concrete such as low tensile stress, strain capacity, and energy absorption capacity, have been overcome using HPFRCCs, but they have a weakness in that the fiber reinforcement has only 2% fiber volume fraction. In this study, slurry infiltrated fiber reinforced cementitious composites (SIFRCCs), which can maximize the fiber volume fraction (up to 8%), was developed, and an experimental study on the tensile behavior of SIFRCCs with varying fiber volume fractions (4%, 5%, and 6%) was carried out through direct tensile tests. The results showed that the specimen with high fiber volume fraction exhibited high direct tensile strength and improved brittleness. As per the results, the direct tensile strength is approximately 15.5 MPa, and the energy absorption capacity was excellent. Furthermore, the bridging effect of steel fibers induced strain hardening behavior and multiple cracks, which increased the direct tensile strength and energy absorption capacity.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Mo Jinchuan ◽  
Ou Zhongwen ◽  
Wang Yahui

The reactive powder concrete (RPC) was used as concrete repair material in this paper. The influence of steel fiber, steel fiber + MgO, and steel fiber + MgO + polypropylene fiber (PPF) on the mechanical properties of RPC repair materials and the splitting tensile strength between RPC and old concrete was studied. Influences of steel fiber, MgO, and PPF on the splitting tensile strength were further examined by using scanning electronic microscopy (SEM) and drying shrinkage test. Results indicated that the compressive and flexural strength was improved with the increasing of steel fiber volume fraction. However, the bonding strength showed a trend from rise to decline with the increasing of steel fiber volume fraction. Although MgO caused mechanical performance degradation of RPC, it improved bonding strength between RPC and existing concrete. The influence of PPF on the mechanical properties of RPC was not obvious, whereas it further improved bonding strength by significantly reducing the early age shrinkage of RPC. Finally, the relationship of drying shrinkage and splitting tensile strength was studied, and the equation between the splitting tensile strength relative index and logarithm of drying shrinkage was obtained by function fitting.


Sign in / Sign up

Export Citation Format

Share Document