Analysys and Optimization of Exit Burr Size and Surface Roughness in Milling Using Desireability Function

Author(s):  
Seyed Ali Niknam ◽  
Rene Kamguem ◽  
Victor Songmene

The burr formation mechanism and surface quality highly depend on machining conditions. Improper selection of cutting parameters may cause tremendous manufacturing cost and low product quality. Proper selection of cutting parameters which simultaneously minimize burr size and surface roughness is therefore very important, as that would reduce the part finishing cost. This article aims to present an experimental study to evaluate parameters affecting the exit burr size (thickness and height) and surface roughness during milling of 6601-T6 aluminum alloy. Desirability function, Di(x), is then proposed for multiple response optimization. Optimum setting levels of process parameters are determined for simultaneous minimization of surface roughness and exit burr thickness and height. It was found that the changes in feed per tooth and tool geometry and coating have significant effects on variation of Di(x).

2013 ◽  
Vol 770 ◽  
pp. 248-252 ◽  
Author(s):  
Ni Chen ◽  
Ming Jun Chen ◽  
Hai Bo Ni ◽  
Ning He ◽  
Zhan Qiang Liu

Burrs generated in micro-milling operation have a significant impact on the surface quality and operational performance of the finished microstructures. In order to gain a better recognition of burr generation process, 3-dimensional double-edged micro-flat end milling operation FEM models on Ti6Al4V have been established. Burrs occurred in simulation can be classified into three types: entrance burr, exit burr, top burr. Their formation processes and causes are well investigated and analyzed, moreover, a series of experiments are conducted to validate the burr morphologies which are received in simulation. At last, the effect of cutting parameters on top burr size is studied through orthogonal experiment on Ti6Al4V, it can be concluded that the axial depth of cut has the greatest effect on top burr size, and the effect of spindle speed on top burr size is the least.


Author(s):  
Tristan Régnier ◽  
Guillaume Fromentin ◽  
Alain D'Acunto ◽  
José Outeiro ◽  
Bertrand Marcon ◽  
...  

During machining, burrs are produced along a part's edges, which can affect a final product lifetime or its efficiency. Moreover, time-consuming and expensive techniques are needed to be applied to remove such burrs. Therefore, companies attempt to reduce burrs formation during machining by manipulating the cutting conditions. This study aims to analyze and quantify the effect of a wide number of parameters on burr formation, resulting from different mechanisms, during orthogonal cutting of AlSi alloys. A highly developed experimental methodology combining high-speed camera recording, laser scanning, and in situ deburring system is used for this study. A statistical analysis is then applied to evaluate relations between controlled parameters and the occurrence of exit burrs morphologies. The results show that the uncut chip thickness influences burr types distribution along the exit edge and chamfer geometry. Among the cutting parameters and tool geometry, tool rake angle is the main parameter affecting burr height. Finally, it is found that none of the burrs geometrical characteristics ranges are piloted by cutting parameters or tool geometry. The assumption of a possible microstructural influence on these outputs is made.


Author(s):  
János Farkas ◽  
Etele Csanády ◽  
Levente Csóka

A number of equations are available for predicting the output of machining processes. These equations are most commonly used for the prediction of surface roughness after tooling. Surface roughness can be influenced by many factors, including cutting parameters, tool geometry and environmental factors such as the coolant used. It is difficult to create a universally applicable equation for all machining because of the variations in different materials' behaviours (e.g. metal, wood, plastic, composite, ceramic). There are also many differences between the various types of machining process such as the machining tools, rotational or translational movements, cutting speeds, cutting methods, etc. The large number of parameters required would make such an equation unusable, and difficult to apply quickly. The goal is thus to create a simple formulation with three or four inputs to predict the final surface roughness of the machined part within adequate tolerances. The two main equations used for this purpose are the Bauer and Brammertz formulas, both of which need to be optimised for a given material. In this paper, the turning of thermoplastics was investigated, with the aim of tuning the Bauer formula for use with thermoplastics. Eleven different plastics were used to develop a material-dependent surface roughness equation. Only new tooling inserts were used to eliminate the effects of tool wear.


2014 ◽  
Vol 487 ◽  
pp. 225-229
Author(s):  
Juan Huang ◽  
Yong Hua Xiong ◽  
Jin Gui Huang ◽  
Gui Cheng Wang

In the process of micro-cutting for the precision small parts, one of the main problems is the micro burrs. The finite element software Abaqus was used to simulate the micro-cutting process of aluminum 2024-T3. To create this model, Johnson-Cook (J-C) model was used to establish the material model, and Arbitrary Lagrangian Eulerian (ALE) method was used to separate the chip from work-piece. The contact friction models which was used between chip and tool was the modified Coulomb friction law. The formation process of micro burrs was simulated dynamically, and the effect of different cutting parameters and tool geometry parameters on burrs forming was analyzed. Furthermore, the general law was obtained. The results provide the guidance for optimizing the tool geometry parameters and cutting parameters to reduce the burrs in micro-cutting with the high surface quality.


2007 ◽  
Vol 24-25 ◽  
pp. 71-76 ◽  
Author(s):  
Wen Jun Deng ◽  
Wei Xia ◽  
Long Sheng Lu ◽  
Yong Tang

2D finite element model with the same material for backup to minimize the burr size was developed to investigate mechanism of burr formation and burr minimization. The flowstress of the workpiece and backup material are taken as a function of strain, strain-rate and temperature. Temperature-dependent material properties are also considered. The Cockroft-Latham damage criterion has been adopted to simulate ductile fracture. The crack initiation and propagation is simulated by deleting the mesh element. The result shows putting a backup material behind the edge of the workpiece is an effective way to minimize the burr size. The effects of cutting condition, temperature and different backup material properties on the burr formation and burr size can be investigated using the developed finite element model. This model could be useful in the search for optimal tool geometry and cutting condition for burr minimization and for the modeling of a burr formation mechanism.


2002 ◽  
Vol 124 (4) ◽  
pp. 792-798 ◽  
Author(s):  
A. Antoniadis ◽  
N. Vidakis ◽  
N. Bilalis

Gear Hobbing is a complex gear manufacturing method, possessing great industrial significance. The convoluted geometry of the cutting tools brings on modeling problems and is the main reason for the almost exclusive application of HSS as cutting material. However, despite its complicated kinematics, gear hobbing is sufficiently described by well-established software tools, which were presented in the first part of the present paper. Experimental investigations exhibited the cutting performance of cemented carbide cutting teeth, which were expected to be potential alternatives for massive hob production. In these cutting experiments, hardmetal tools exhibited in several cases early and unexpected brittle failures, which were interpreted by the FRSFEM model in the first part of the paper. This analysis indicated that the occurring dynamic stresses are the reason for the observed fatigue failures on the cemented carbide tools. The occurring stresses are highly dependent on the selection of cutting parameters and on the tool geometry. Therefore, the proper selection of the cutting data may prevent the early tool failures, as the dominant parameters for tool wear, allowing it to be worn out by the conventional abrasive mechanisms. Thus, the doubtless dominance of cemented carbide over the HSS tools, may be rendered. The present work illustrates a parametric analysis, which describes quantitatively the effect of various cutting and technological parameters on the stress level occurring in gear hobbing, with cemented carbide cutting teeth. Hereby, the optimization of the tool life is enabled, allowing the maximum exploitation of modern gear hobbing machine tools. Optimized gear hobbing with cemented carbide tools may be used, in order to introduce higher cutting speeds in massive gear production.


2015 ◽  
Vol 22 (1) ◽  
pp. 81-88
Author(s):  
Murugesh Mudegowdar

AbstractIn the present work, an attempt has been made to investigate the drilling behavior of the titanium dioxide (TiO2)- and zinc sulfide (ZnS)-filled glass fabric-reinforced polymer (GFRP) matrix composites. The volume fractions in the matrix were chosen as 1%, 2%, and 3%. Drilling has been conducted on CNC Vertical Machining Center. Speed and feed of drilling and drill tool geometry were considered as the varying parameters with three levels. Thrust force, delamination factor, and surface roughness have been considered as the output parameters and measured in each combination of parameters chosen. Results reveal that the addition of filler will increase the thrust force developed during drilling and indicate that drill point angle has a direct effect on the thrust value. Delamination factor increases with increase in feed and decreases as speed increases. Also, it can be observed that surface roughness decreases with increase in speed and increases with increase in feed. ZnS-filled composite shows less damage than TiO2.


Sign in / Sign up

Export Citation Format

Share Document