Low-Frequency Broadband Energy Harvesting Based on Locally Resonant Phononic Crystals

Author(s):  
Siwen Zhang ◽  
Jiu Hui Wu

In this paper, a low-frequency broadband energy harvesting structure is proposed based on locally resonant phononic crystals (LRPCs). The low-frequency LR characteristics and energy harvesting capabilities of the proposed structure are investigated by using the finite element method. Energy localization effects are verified when local resonances occur, making the proposed LR structure work as an energy collector. Structure modifications are performed to improve the low-frequency energy collecting performance. For the suggested structure with composite units, sixteen resonant frequencies are found in the frequency range below 250 Hz, at which vibration energy is localized intensively in the piezoelectric folded beams. Based on the frequency response analysis, the composite structures are proved to have good energy harvesting capabilities over a broadband low frequency range, due to the multiple resonances and the high concentration of localized energy. These structures will be helpful for the self-powered microsystems, such as portable electronic devices, wireless sensors, microelectromechanical systems (MEMS) and so on, to extract energy from ambient low frequency vibrations.

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 598 ◽  
Author(s):  
Kwangseok Lee ◽  
Jeong-won Lee ◽  
Kihwan Kim ◽  
Donghyeon Yoo ◽  
Dong Kim ◽  
...  

Water waves are a continuously generated renewable source of energy. However, their random motion and low frequency pose significant challenges for harvesting their energy. Herein, we propose a spherical hybrid triboelectric nanogenerator (SH-TENG) that efficiently harvests the energy of low frequency, random water waves. The SH-TENG converts the kinetic energy of the water wave into solid–solid and solid–liquid triboelectric energy simultaneously using a single electrode. The electrical output of the SH-TENG for six degrees of freedom of motion in water was investigated. Further, in order to demonstrate hybrid energy harvesting from multiple energy sources using a single electrode on the SH-TENG, the charging performance of a capacitor was evaluated. The experimental results indicate that SH-TENGs have great potential for use in self-powered environmental monitoring systems that monitor factors such as water temperature, water wave height, and pollution levels in oceans.


Author(s):  
Davide Castagnetti

Energy harvesting from kinetic ambient energy requires converters able to efficiently operate in the low frequency range. A limit of the solutions proposed in the literature, both electromagnetic and piezoelectric, is their operating frequency, which generally ranges from about 50 to 300 Hz. To overcome these limitations, this work proposes an innovative energy harvester exploiting two counteracting Belleville springs. Thanks to the peculiar height to thickness ratio of the springs a highly compliant elastic system is obtained, which can be used either for electromagnetic or piezoelectric harvesting. The harvester is modelled analytically and numerically both with regard to the force-displacement and to the modal response. The experimental validation of the harvester, highlights a noticeable power output but at a higher eigenfrequency than expected.


2018 ◽  
Vol 25 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Ludmila Prikazchikova ◽  
Yağmur Ece Aydın ◽  
Barış Erbaş ◽  
Julius Kaplunov

Anti-plane dynamic shear of a strongly inhomogeneous dynamic laminate with traction-free faces is analysed. Two types of contrast are considered, including those for composite structures with thick or thin stiff outer layers. In both cases, the value of the cut-off frequency corresponding to the lowest antisymmetric vibration mode tends to zero. For this mode, the shortened dispersion relations and the associated formulae for displacement and stresses are obtained. The latter motivate the choice of appropriate settings, supporting the limiting forms of the original anti-plane problem. The asymptotic equation derived for a three-layered plate with thick faces is valid over the whole low-frequency range, whereas the range of validity of its counterpart for another type of contrast is restricted to a narrow vicinity of the cut-off frequency.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Zhongsheng Chen ◽  
Jing He ◽  
Gang Wang

Embedded wireless sensing networks (WSNs) provide effective solutions for structural health monitoring (SHM), where how to provide long-term electric power is a bottle-neck problem. Piezoelectric vibration energy harvesting (PVEH) has been widely studied to realize self-powered WSNs due to piezoelectric effect. Structural vibrations are usually variable and exist in the form of elastic waves, so cantilever-like harvesters are not appropriate. In this paper, one kind of two-dimensional (2D) piezoelectric metamaterial plates with local resonators (PMP-LR) is investigated for structural vibration energy harvesting. In order to achieve low-frequency and broadband PVEH in SHM, it is highly necessary to study dynamic characteristics of PMP-LR, particularly bandgaps. Firstly, an analytical model is developed based on the Kirchhoff plate theory, and modal analysis is done by using the Rayleigh–Ritz method. Then, effects of geometric and material parameters on vibration bandgaps are analyzed by finite element-based simulations. In the end, experiments are carried out to validate the simulated results. The results demonstrate that the location of bandgaps can be easily adjusted by the design of local resonators. Therefore, the proposed method will provide an effective tool for optimizing local resonators in PMP-LR.


1985 ◽  
Vol 58 (3) ◽  
pp. 1026-1030
Author(s):  
D. D. Hickey ◽  
J. Zaharkin

A low-frequency response analysis of three Grass model 7 polygraphs was undertaken. Observed error was generally found to fall within the manufacturer's stated range of +5 to -10% of DC signal height over the frequency range of human respiration (0.1–3 Hz), but this was not the case for frequencies greater than 6 Hz under certain circumstances. The magnitude of error was seen to vary directly with frequency and indirectly with pen-deflection amplitude and paper speed. The pen-oscillograph apparatus was the predominant source of low-frequency error, and this is probably due to pen inertia and pen friction on the writing surface. Two schemes to reduce such error are presented.


Nanoscale ◽  
2019 ◽  
Vol 11 (15) ◽  
pp. 7199-7208 ◽  
Author(s):  
Wei Zhong ◽  
Liang Xu ◽  
Xiaodan Yang ◽  
Wei Tang ◽  
Jiajia Shao ◽  
...  

Open-book-like triboelectric nanogenerators enable highly effective wave energy harvesting with enhanced power and charge output for self-powered marine systems.


2020 ◽  
Vol 12 (07) ◽  
pp. 2050075
Author(s):  
Hongyun Wang ◽  
Heow Pueh Lee ◽  
Wei Xu

Multi-layered locally resonant phononic crystals (LRPCs) with wider and multiple bandgaps (BGs) in low frequency range and small size of the unit cell have promising applications in noise and vibration controls. In this paper, a 2D two-layered ternary LRPC consisting of a periodical array of cylindrical inclusions embedded in an epoxy matrix is investigated by the finite element method (FEM), where the inclusion is comprised of two coaxial cylindrical steel cores with rubber coating. It is found that the size of the inclusion of the 2D two-layered ternary LRPC has significant effects on the BG properties. With the increase of the core radius and coating thickness, the first BG would shift to lower frequency range with its width decreasing, and the second BG width would become wider until the third BG appears. Especially, with the increase of the coating thickness, more bands and BGs would appear in the lower frequency range. Based on the formation mechanisms of the BGs, several mass-spring models to predict the frequencies of the first two BG edges are developed. The results calculated by these mass-spring models are in good agreement with those by the FEM except for the upper edge frequency of the second BG when the rubber coating thickness exceeds a certain value and the third BG is opened up. These proposed mass-spring models would allow for quick pre-estimation of the resonance frequencies, and facilitate the selection of possible parameters for the wider and lower frequency BGs to obtain the desired attenuation bands. The studies would also benefit the design of multiple BGs for some device applications.


2018 ◽  
Vol 5 (1) ◽  
pp. 015510 ◽  
Author(s):  
Ying Yuan ◽  
Hulin Zhang ◽  
Jie Wang ◽  
Yuhang Xie ◽  
Saeed Ahmed Khan ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Huaxia Deng ◽  
Zizheng Zhao ◽  
Chong Jiao ◽  
Jingchang Ye ◽  
Shiyu Zhao ◽  
...  

There are a lot of vibrational energies, which are low frequency, multidirectional, and broadband, in the nature. This creates difficulties for devices that aim at harvesting vibration energy. Here, we present a liquid-metal-based freestanding triboelectric generator (LM-FTG) for vibration energy harvesting. In this device, the fluidity of liquid is used to increase sensitivity to vibration for better low-frequency response and multidirectional vibration energy harvesting capability. The freestanding power generation mode is able to increase power generation stability. Experiments show that the bandwidth of LM-FTG can almost cover the entire sweep frequency range, and a 10 μF capacitor can be charged to 6.46 V at 7.5 Hz in 60 s by LM-FTG. In particular, 100 LEDs are illuminated in the low-frequency environmental experiment successfully. The proposed LM-FTG can work in low frequency with large working bandwidth, which provides an effective method for energy harvesting of low-frequency and multidirectional vibrations.


Sign in / Sign up

Export Citation Format

Share Document