Numerical Analysis on the Development of the Large-Scale Showerhead for Depositing AlGaInN Films

Author(s):  
Chulsoo Byun ◽  
Dae Hyeon Kim ◽  
Kang Woo Joo ◽  
Kwang-Sun Kim

The metal organic chemical vapor deposition (MOCVD) process is widely used to form a multi-layered structure with thin films for diverse semiconductor materials. The MOCVD process is the most promising method for manufacturing chips that are based on the compound semiconductor, but its technology is partly still insufficient. If a device, for example, lacks a non-uniformity related to the composition and thickness of the film, it decreases the reliability of the final product and affects the economics. To ensure that the equipment is competitive in the worldwide markets, a high reliability including the controllability of compositions is required for the equipment. In this study the CFD analysis was used to investigate the behavior of the process gas in a MOCVD reactor where the process gases including the component of the GaN films are injected as separated through a multi-module showerhead for eventually targeting multi-component films such as AlGaInN materials. After applying of Porous Media, a stabilization of process gas was confirmed from the results of pressure distribution.

2011 ◽  
Vol 308-310 ◽  
pp. 1037-1040
Author(s):  
Liao Qiao Yang ◽  
Jian Zheng Hu ◽  
Zun Miao Chen ◽  
Jian Hua Zhang ◽  
Alan G. Li

In this paper, a novel super large metal organic chemical vapor deposition (MOCVD) reactor with three inlets located on the periphery of reactor was proposed and numerical evaluation of growth conditions for GaN thin film was characterized. In this design, the converging effects of gas flow in the radial direction could counterbalance the dissipation of metal organics source. CFD was used for the mathematical solution of the fluid flow, temperature and concentration fields. A 2-D model utilizing axisymmetric mode to simulate the gas flow in a MOCVD has been developed. The growth of GaN films using TMGa as a precursor, hydrogen as carrier gas was investigated. The effects of flow rates, mass fraction of various species, operating pressure, and gravity were analyzed and discussed, respectively. The numerical simulation results show all the fields distributions were in an acceptable range.


Nanoscale ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 336-341 ◽  
Author(s):  
Kehao Zhang ◽  
Bhakti Jariwala ◽  
Jun Li ◽  
Natalie C. Briggs ◽  
Baoming Wang ◽  
...  

Large area 2D MoS2 and WSe2 are integrated on 3D GaN by metal organic chemical vapor deposition (MOCVD). The thickness-dependent vertical tunneling and interlayer charge transfer is carefully studied. This work shows that few layer WSe2 film is the appropriate choice towards device application of synthetic 2D/3D heterostructures.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1126
Author(s):  
Agata Sawka

This work presents the results of structure, microstructure, and chemical composition investigations performed on ZrO2-Sm2O3 layers synthesized by MOCVD (metal-organic chemical vapor deposition) using Zr(tmhd)4 and Sm(tmhd)3 as reactants on quartz glass substrate. The molar percentage of Sm(tmhd)3 used to obtain the layers at both 500 and 550 °C was 14% and 22.75%, respectively. Synthesis parameters were selected so that the value of the extended criterion Grx/Rex2 (Gr—Grashof number, Re—Reynolds number, x—the distance from the gas inflow point to the CVD (MOCVD) reactor) could be maintained below 0.01. It was determined from XRD (X-ray diffraction) analyses that the layers deposited at 500 °C contained small amounts of a crystalline phase and the layers obtained at 550 °C contained greater amounts of the crystalline phase (solid solution). SEM (scanning electron microscope) observations have also shown that the crystalline phase is present in the layers synthesized at 500 °C, as well as at 550 °C. EDS (energy dispersive spectroscopy) studies have indicated that molar content of Sm2O3 in the crystalline phase is lower in comparison to the amount present in the respective amorphous phase. The larger the Sm2O3 content in the layer, the higher the growth rate.


2021 ◽  
Vol 15 (6) ◽  
pp. 2170024
Author(s):  
Yuxuan Zhang ◽  
Zhaoying Chen ◽  
Kaitian Zhang ◽  
Zixuan Feng ◽  
Hongping Zhao

ACS Nano ◽  
2020 ◽  
Author(s):  
Assael Cohen ◽  
Avinash Patsha ◽  
Pranab K. Mohapatra ◽  
Miri Kazes ◽  
Kamalakannan Ranganathan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document