Performance and Vibration of a Double Volute Centrifugal Pump: Effect of Impeller Trimming

Author(s):  
Atia E. Khalifa

The fluid-structure interaction phenomenon, as manifested by the pressure pulsation excited by rotor-stator interaction, is the main cause of flow-induced vibrations at the blade passing frequency in large and high pressure centrifugal pumps. This phenomenon is strongly influenced by the clearance gap between impeller and volute diffusers/tongues and the geometry of impeller blade at exit. One way to reduce the effects of this interaction is to increase the effective gap by trimming the impeller. However, trimming the impeller will affect the pump performance and the flow pattern inside the pump volute. In the present work, experiments are carried out using a single stage, double-volute centrifugal model pump to investigate the effect of increasing the clearance gap by trimming the impeller on pump performance and vibration. Pressure fluctuations around the impeller inside pump volute are monitored and recorded. The clearance gap was increased three times by trimming the impeller radius by 1 mm, 2 mm, and 3 mm; respectively. Results showed that trimming the impeller reduces the pump vibration at the expense of the developed pump head. The minimum vibration was measured at the best efficiency point of the pump and the vibration amplitude increases when the pump operates at off-design conditions. Impeller trimming is more effective at flow rates equal to and higher that the design flow rate.

2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
A. Al-Qutub ◽  
A. Khalifa ◽  
Y. Khulief

It has been recognized that the pressure pulsation excited by rotor-stator interaction in large pumps is strongly influenced by the radial gap between impeller and volute diffusers/tongues and the geometry of impeller blade at exit. This fluid-structure interaction phenomenon, as manifested by the pressure pulsation, is the main cause of flow-induced vibrations at the blade-passing frequency. In the present investigation, the effects of the radial gap and flow rate on pressure fluctuations, vibration, and pump performance are investigated experimentally for two different impeller designs. One impeller has a V-shaped cut at the blade's exit, while the second has a straight exit (without the V-cut). The experimental findings showed that the high vibrations at the blade-passing frequency are primarily raised by high pressure pulsation due to improper gap design. The existence of V-cut at blades exit produces lower pressure fluctuations inside the pump while maintaining nearly the same performance. The selection of proper radial gap for a given impeller-volute combination results in an appreciable reduction in vibration levels.


2005 ◽  
Vol 127 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Yasushi Tatebayashi ◽  
Kazuhiro Tanaka ◽  
Toshio Kobayashi

The authors have been investigating the various characteristics of screw-type centrifugal pumps, such as pressure fluctuations in impellers, flow patterns in volute casings, and pump performance in air-water two-phase flow conditions. During these investigations, numerical results of our investigations made it clear that three back flow regions existed in this type of pump. Among these, the back flow from the volute casing toward the impeller outlet was the most influential on the pump performance. Thus the most important factor to achieve higher pump performance was to reduce the influence of this back flow. One simple method was proposed to obtain the restraint of back flow and so as to improve the pump performance. This method was to set up a ringlike wall at the suction cover casing between the impeller outlet and the volute casing. Its effects on the flow pattern and the pump performance have been discussed and clarified to compare the calculated results with experimental results done under two conditions, namely, one with and one without this ring-type wall. The influence of wall’s height on the pump head was investigated by numerical simulations. In addition, the difference due to the wall’s effect was clarified to compare its effects on two kinds of volute casing. From the results obtained it can be said that restraining the back flow of such pumps was very important to achieve higher pump performance. Furthermore, another method was suggested to restrain back flow effectively. This method was to attach a wall at the trailing edge of impeller. This method was very useful for avoiding the congestion of solids because this wall was smaller than that used in the first method. The influence of these factors on the pump performance was also discussed by comparing simulated calculations with actual experiments.


Author(s):  
Yasushi Tatebayashi ◽  
Kazuhiro Tanaka ◽  
Toshio Kobayashi

The authors have been investigating the various characteristics of screw-type centrifugal pumps, such as pressure fluctuations in impellers, flow patterns in volute casings, and pump performance in air-water two-phase flow conditions. During these investigations, numerical results of our investigations made it clear that three back flow regions existed in this type of pump. Among these, the back flow from the volute casing toward the impeller outlet was the most influential on the pump performance. Thus the most important factor to achieve higher pump performance was to reduce the influence of this back flow. One simple method was proposed to obtain the restraint of back flow and so as to improve the pump performance. This method was to set up a Ring-like wall at the suction cover casing between the impeller outlet and the volute casing. Its effects on the flow pattern and the pump performance have been discussed and clarified to compare the calculated results with experimental results done under two conditions — namely, one with and one without this Ring-type wall. The influence of wall’s height on the pump head was investigated by numerical simulations. In addition, the difference due to the wall’s effect was clarified to compare its effects on two kinds of volute casing. From the results obtained it can be said that restraining the back flow of such pumps was very important to achieve higher pump performance. Furthermore, another method was suggested to restrain back-flow effectively. This method was to attach a wall at the trailing edge of impeller. This method was very useful for avoiding the congestion of solids because this wall was smaller than that used in the first method. The influence of these factors on the pump performance was also discussed by comparing simulated calculations with actual experiments.


Author(s):  
Zhifeng Yao ◽  
Min Yang ◽  
Ruofu Xiao ◽  
Fujun Wang

The unsteady flow field and pressure fluctuations in double-suction centrifugal pumps are greatly affected by the wall roughness of internal surfaces. To determine the wall roughness effect, numerical and experimental investigations were carried out. Three impeller schemes for different wall roughness were solved using detached eddy simulation, and the performance and pressure fluctuations resolved by detached eddy simulation were compared with the experimental data. The results show that the effects of wall roughness on the static performance of a pump are remarkable. The head and efficiency of the tested double-suction centrifugal pump are raised by 2.53% and 6.60% respectively as the wall roughness is reduced by means of sand blasting and coating treatments. The detached eddy simulation method has been proven to be accurate for the prediction of the head and efficiency of the double-suction centrifugal pump with roughness effects. The influence of the roughness on pressure fluctuation is greatly dependent on the location relative to the volute tongue region. For locations close to the volute tongue, the peak-to-peak value of the pressure fluctuations of a wall roughness of Ra = 0.10 mm may be 23.27% larger than the case where Ra = 0.02 mm at design flow rate.


2018 ◽  
pp. 41-48 ◽  
Author(s):  
Qiaorui Si ◽  
Qianglei Cui ◽  
Keyu Zhang ◽  
Jianping Yuan ◽  
Gérard Bois

In order to study the flow characteristics of centrifugal pumps when transporting the gas-liquid mixture, water and air were chosen as the working medium. Both numerical simulation and experimental tests were conducted on a centrifugal pump under different conditions of inlet air volume fraction (IAVF). The calculation used URANS k-epsilon turbulence model combined with the Euler-Euler inhomogeneous two-phase model. The air distribution and velocity streamline inside the impeller were obtained to discuss the flow characteristics of the pump. The results show that air concentration is high at the inlet pressure side of the blade, where the vortex will exist, indicating that the gas concentration have a great relationship with the vortex aggregation in the impeller passages. In the experimental works, pump performances were measured at different IAVF and compared with numerical results. Contributions to the centrifugal pump performance degradations were analyzed under different air-water inlet flow condition such as IAVF, bubble size, inlet pressure. Results show that pump performance degradation is more pronounced for low flow rates compared to high flow rates. Finally, pressure pulsation and vibration experiments of the pump model under different IAVF were also conducted. Inlet and outlet transient pressure signals under four IAVF were investigated and pressure pulsation frequency of the monitors is near the blade passing frequency at different IAVF, and when IAVF increased, the lower frequency signal is more and more obvious. Vibration signals at five measuring points were also obtained under different IAVF for various flow rates.


Author(s):  
Carlos Luis Moreno ◽  
Alejandro Fuenmayor ◽  
Gilberto Núñez ◽  
Jesús De Andrade ◽  
Ricardo Noguera ◽  
...  

Centrifugal pump performance is affected when pumping viscous liquids, requiring a larger power input than the same pump handling water. In applications of chemical, civil, environmental, and mechanical engineering that involve centrifugal pumps, it is a challenge to accurately estimate and even more of a challenge to improve their performance when handling viscous liquids. When accurate performance data is needed, difficult experiments must be conducted with the operating viscous flow. The extension of the applicability of numerical techniques for solving fluid dynamics (CFD) permits the consideration of these tools as a definite possibility for predicting the performance of centrifugal pumps with viscous flows. The purpose of this study is to perform a 3D-CFD steady-state simulation of three different configurations of centrifugal pumps. The first is an impeller-diffuser pump (ns = 19) taken from an ESP model. The second is a Francis Pump-Turbine (ns = 28). Finally, the third configuration possesses an impeller and volute (ns = 32). The objective is to characterize and evaluate their performances with four different fluids from 1 to 420 cSt. These are: water at 25°C, SAE10 and SAE30 oils, and Fuel Oil Medium (FOM). For water flow conditions, the numerical results were compared with experimental data, and found to be consistent with global performance parameters. With regard to the higher viscosity fluids, the CFD calculation was compared with those obtained through the standard empirical method (ANSI/HI9.6.7). This resulted in good agreement between the performance results. The commercial software ANSYS-CFX was used for the CFD calculations. The resulting pump performance curve (head, hydraulic efficiency and power output) is consistent with that expected by theory. In general, as the viscosity of fluids increases, the hydraulic energy losses increase. Of the three pumps, slip factor for SAE30 oil was larger for all volumetric flows since it features the best guidance of the flow in the impeller blade passage. For the ns32 pump and the pump-turbine ns28, the volute losses rose from water to FOM, just like the impeller hydraulic losses. For these two turbo machines, the impeller losses were larger than volute losses. For the pumps with volute, the effects of fluid viscosity on the radial forces were evaluated. It was found that the radial forces decrease when the viscosity increases. This paper attempts to contribute to a better understanding of fluid dynamics within centrifugal pump impellers handling viscous fluids, and intends to shed more light on the approaches that performance prediction models should follow in the future.


Author(s):  
Sugeng Hadi Susilo ◽  
Agus Setiawan

The paper discusses the performance of the pump in relation to the impeller. The impeller section is determined by the number and angle of the blades. Therefore, the purpose of this study was to analyze the role of the number and angle of impeller blades on the performance (discharge and discharge pressure) of centrifugal pumps based on experiments and simulations. The method used is experiment and simulation. Using a centrifugal pump type GWP 20/4 SW, Maximum Output: 6.5 HP/3500 rpm, Inlet/Outlet: 2 Inch, Dimensions: 475x375x370 mm. Experiments and simulations by varying the number of blades 2, 4, and 6 with a blade tilt angle of 130°, 150°, and 160°. For flow simulation using solid works program. The results show that pump performance is related to discharge pressure, impeller with 2-blades and an angle of 130° the pressure increases 0.45–2.45 bar, for 150° increases 0.14–2.96 bar, and 160° increases 0.29–3.07 bars. For a 4-blade impeller and an angle of 130°, the pressure increases by 0.48–3.12 bar, for 150° it increases by 0.39–3.39 bar, and for 160° it increases by 0.36–3.48 bar. While the impeller for 6-blades with an angle of 130° the pressure increases from 0.6 bar to 3.72 bar, for 150° increases from 1.36 to 4.34 bar, and 160° increases by 0.36–4.74 bar. While it related pump performance to flow rate, increasing the number of blades causes a decrease in flow rate. The highest flow rate is in a 2-blade impeller with a blade angle of 130° is 404.91 l/s. The lowest flow rate is on a 6-blade impeller with an angle of 160° is 279.66 l/s


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4377 ◽  
Author(s):  
Si ◽  
Zhang ◽  
Bois ◽  
Zhang ◽  
Cui ◽  
...  

Centrifugal pumps are widely used and are known to be sensitive to inlet air-water two-phase flow conditions. The pump performance degradation mainly depends on the changes in the two-phase flow behavior inside the pump. In the present paper, experimental overall pump performance tests were performed for two different rotational speeds and several inlet air void fractions (αi) up to pump shut-off condition. Visualizations were also performed on the flow patterns of a whole impeller passage and the volute tongue area to physically understand pump performance degradation. The results showed that liquid flow modification does not follow head modification as described by affinity laws, which are only valid for homogeneous bubbly flow regimes. Three-dimensional effects were more pronounced when inlet void fraction increased up to 3%. Bubbly flow with low mean velocities were observed close to the volute tongue for all αi, and returned back to the impeller blade passages. The starting point of pump break down was related to a strong inward reverse flow that occurred in the vicinity of the shroud gap between the impeller and volute tongue area.


Author(s):  
Hongyu Guan ◽  
Wei Jiang ◽  
Yuchuan Wang ◽  
Gaoyang Hou ◽  
Xiangyuan Zhu ◽  
...  

The clocking position of the vaned diffuser, the circumferential position of the vaned diffuser relative to the volute, has a certain effect on the performance of the centrifugal pump. Therefore, this paper studies the guide vane centrifugal pump from the aspects of pressure pulsation, hydraulic performance, and energy loss. The maximum difference in efficiency is 3.4% under the design flow rate, and the maximum difference in the head coefficient is 4.7%. The hydraulic performance and pressure pulsation present different trends with the increase of the vaned diffuser clock angle. When the hydraulic performance and pressure pulsation are relatively good, the circumferential distance between the tongue and the upstream vaned diffuser blade is 3/4 of the diffuser flow path. In addition, the recommended vaned diffuser installation location may also be suitable for centrifugal pumps of similar construction. The energy loss was visualized using the theory of entropy production. The distributions of energy loss and flow field indicate that the energy loss of impeller and vaned diffuser changes little. The change of the vortex in the tongue and outlet area will cause a significant change in the energy loss of the volute, which is the main reason that the hydraulic performance of the centrifugal pump is affected by the clocking position of the vaned diffuser.


2014 ◽  
Vol 6 ◽  
pp. 159380 ◽  
Author(s):  
Ji Pei ◽  
Wenjie Wang ◽  
Shouqi Yuan ◽  
Jieyun Mao

Pressure fluctuations are the main factors that can give rise to reliability problems in centrifugal pumps. The periodically unsteady pressure characteristics caused by rotor-stator interaction have been investigated by CFD calculation in a residual heat removal pump. Side chamber flow effect is also considered for the simulation to accurately predict the flow in whole flow passage. The pressure fluctuation results in time and frequency domains were considered for several typical monitoring points in impeller and diffuser channels. In addition, the pressure fluctuation intensity coefficient (PFIC) based on standard deviation was defined on each grid node for entire space and impeller revolution period. The results show that strong pressure fluctuation intensity can be found in the gap between impeller and diffuser. As a source, the fluctuation can spread to the upstream and downstream flow channels as well as the side chamber channels. Meanwhile, strong pressure fluctuation intensity can be found in the discharge tube of the circular casing. In addition, the obvious influence of operational flow rate on the PFIC distribution can be found. The analysis indicates that the pressure fluctuations in the aspects of both frequency and intensity can be used to comprehensively evaluate the unsteady pressure characteristics in centrifugal pumps.


Sign in / Sign up

Export Citation Format

Share Document